首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The manufacture of hydrogen energy by overall water splitting (OWS) has been broadly considered as a promising candidate for constant energy systems. Herein, we report an okra-like hollow Cu0.15-CoP/Co3O4@CC nanotube arrays catalyst through a simple hydrothermal-phosphating method. As a noble-metal-free catalyst, it exhibits outstanding HER (hydrogen evolution reaction) catalytic activity with an overpotential of 13 mV to achieve 10 mA cm?2 in 1 M KOH electrolyte. For OER (oxygen evolution reaction), it demands 225 mV to achieve 10 mA cm?2. When okra-like hollow Cu0.15-CoP/Co3O4@CC is used as both cathode and anode electrode materials, 1.487 V is required to reach 10 mA cm?2 for OWS, better than numerous electrocatalysts that have been reported. Moreover, it displays excellent stability in a continuously 60 h i-t test, proving an enormous potential for large-scale applications. The theoretical calculation of density functional theory (DFT) further reveals that Cu doping can bring localized structure polarization and reduce the hydrogen adsorption free energy (ΔGH1) on the interstitial sites, thus leading to a significant increase in catalytic activity.  相似文献   

2.
The rational design of catalysts with low cost, high efficient and robust stability toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, a one-pot, spatially confined strategy was reported to fabricate ultrathin NiFe layered double hydroxide (NiFe-LDH) nanosheets interconnected by ultrafine, strong carbon nanofibers (CNFs) network. The as-fabricated NiFe-LDH/CNFs catalyst exhibits enhanced OER catalytic activity in terms of low overpotential of 230 mV to obtain an OER current density of 10 mA cm?2 and very small Tafel slope of 34 mV dec?1, outperforming pure NiFe-LDH nanosheets assembly, commercial RuO2, and most non-noble metal catalysts ever reported. It also delivers an excellent structural and electrocatalytic stability upon the long-term OER operation at a large current of 30 mA cm?2 for 40 h. Furthermore, the cell assembled by using NiFe-LDH/CNFs and commercial Pt/C as anode (+) and cathode (?) ((+)NiFe-LDH/CNFs||Pt/C(?)) only requires a potential of 1.50 V to deliver the water splitting current of 10 mA cm?2, 130 mV lower than that of (+)RuO2||Pt/C(?) couple, demonstrating great potential for applications in cost-efficient water splitting devices.  相似文献   

3.
Interfacial charge redistribution induced by a strong built-in electric field can expertly optimize the adsorption energy of hydrogen and hydroxide for improving the catalytic activity. Herein, we develop a well-defined hierarchical NiFe2O4/NiFe layered double hydroxides (NFO/NiFe LDH) catalysts, exhibiting superior performance due to the strong interfacial electric field interaction between NiFe2O4 nanoparticle layers and NiFe LDH nanosheets. In 1 M KOH, NFO/NiFe LDH needs 251 mV and 130 to drive 50 and 10 mA cm?2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Moreover, only 1.517 V cell voltage is needed to reach 10 mA cm?2 towards overall water splitting. Notably, under simulated industrial electrolysis conditions, NFO/NiFe LDH only needs 289 mV to drive 1000 mA cm?2. This work puts a deep insight into the role of the built-in electric field in transition metal-based catalysts for accelerating water splitting and scalable industrial electrolysis applications.  相似文献   

4.
The high-efficiency non-precious metal catalysts for oxygen evolution (OER) and hydrogen evolution (HER) are of great significance to the development of renewable energy technologies. Herein, a multiple active sites CoNi-MOFs-DBD electrocatalyst modified by low temperature plasma (DBD) was successfully synthesized by converting metal hydroxyfluoride on nickel foam into a well-arranged MOFs array using vapor deposition. The as-prepared CoNi-MOFs-DBD electrode showed better HER and OER catalytic activity, super hydrophilicity, and excellent stability. In an alkaline medium, the overpotential of HER is 203 mV at 10 mA cm?2 and that of OER is 168 mV at 40 mA cm?2. When CoNi-MOFs-DBD was used as a bifunctional electrocatalyst for overall water splitting in a two-electrode system, a current density of 10 mA cm?2 can be achieved at a low voltage of 1.42 V, which shows great potential in electrocatalytic water splitting.  相似文献   

5.
High-efficiency water splitting catalysts are competitive in energy conversion and clean energy production. Herein, a bifunctional water splitting catalyst CoNiP with cation vacancy defects (CoNiP–V) is constructed through defect engineering. The results show that abundant cation vacancy defects in CoNiP–V are bifunctional active centers in the process of water electrolysis, which enhance the activity of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In 1.0 mol L?1 potassium hydroxide, CoNiP–V requires a pretty low overpotential of 58 mV to reach a geometrical current density of 10 mA cm?2 for HER. To deliver a current density of 100 mA cm?2, only 137 mV and 340 mV of overpotential are needed for HER and OER, respectively. Moreover, the cell with CoNiP–V as both cathode and anode exhibits good stability, which only needs 1.61 V to achieve a current density of 100 mA cm?2, and the cell voltage barely rises 10% after 100 h’ test under 100 mA cm?2. Therefore, CoNiP–V is promising for the development of efficient water splitting catalysts.  相似文献   

6.
Constructing high-efficient and nonprecious electrocatalysts is of primary importance for improving the efficiency of water splitting. Herein, a novel sunflower plate-like NiFe2O4/CoNi–S nanosheet heterostructure was fabricated via facile hydrothermal and electrodeposition methods. The as-fabricated NiFe2O4/CoNi–S heterostructure array exhibits remarkable bifunctional catalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. It presents a small overpotential of 219 mV and 149 mV for OER and HER, respectively, to produce a current density of 10 mA cm?2. More significantly, when the obtained electrodes are used as both the cathode and anode in an electrolyzer, a voltage of 1.57 V is gained at 10 mA cm?2, with superior stability for 72 h. Such outstanding properties are ascribed to: the 3D porous network structure, which exposes more active sites and accelerates mass transfer and gas bubble emission; the high conductivity of CoNi–S, which provides faster charge transport and thus promotes the electrocatalytic reaction of the composites; and the effective interface engineering between NiFe2O4 (excellent performance for OER) and CoNi–S (high activity for HER), which leads to a shorter transport pathway and thus expedites electron transfer. This work provides a new strategy for designing efficient and inexpensive electrocatalysts for water splitting.  相似文献   

7.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

8.
Electrochemical water splitting is considered as a promising strategy for the efficient hydrogen production, yet it is hindered by the sluggish oxygen evolution reaction (OER). Herein, heterostructure OER catalyst is fabricated by combining MoS2 nanosheets with NiCo2O4 hollow sphere on Ti mesh. Benefiting from the heterogeneous nanointerface between NiCo2O4 and MoS2, this electrocatalyst demonstrates excellent OER activity in basic environment with overpotentials of 313 and 380 mV achieving 10 and 100 mA cm−2. The superb catalytic performance stems from hollow the nanostructure and interfacial engineering strategy that enhance intrinsic activity and provide faster charge transfer. Hence, this work provides a feasible path for exploiting the high-efficient catalysts.  相似文献   

9.
Electrocatalytic overall water splitting technology has received considerable attention in recent years. The fabrication of low-cost, earth-rich and potent bifunctional electrocatalysts is vital for hydrogen evolution (HER) and oxygen evolution reactions (OER). Herein, the N and S co-doped NiCo2O4@CoMoO4 heterostructures (N, S–NCO@CMO400) are fabricated by CVD and hydrothermal methods. N and S atoms as auxiliary active centers can increase the activity of Ni, Co and Mo atoms at the same time. Hierarchical heterostructures generate more interfaces to accelerate mass transfer and enlarge the electrochemical surface area, which greatly enhances the catalytic activity. The catalyst displays outstanding OER performance. The overpotentials of OER and HER are 165 and 100 mV at a current density of 10 mA cm?2, respectively. More importantly, the N, S–NCO@CMO400-based water splitting cell has a low voltage of 1.46 V at 10 mA cm?2. Furthermore, the N, S–NCO@CMO400 runs for 120 h in stable operation. This work provides new ideas for the design of hierarchical heterostructures with two-element incorporation.  相似文献   

10.
Alkaline water electrolysis is a promising strategy for the production of hydrogen and oxygen. However, developing high-efficiency non-precious electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is still a big challenge. Here, we report a nickel foam-based electrode coated with NiCoV-LDH and NiCo-LDH nanosheets (denoted as NiCo-LDH@NiCoV-LDH/NF) by a two-step method for efficient water splitting performance. The NiCo-LDH@NiCoV-LDH/NF with unique nanosheet-on-nanosheet construction can enlarge the electrochemical active specific surface area greatly, and thus accelerate the charge transfer of electrocatalytic reactions. Besides, the doping of vanadium could also improve the OER performance. The electrode only requires a low overpotential for OER (260 mV at 100 mA cm?2), and HER (80 mV at 10 mA cm?2) reactions in 1.0 mol/L KOH solution at room temperature. Furthermore, in the two-electrode water splitting test, a current density of 10 mA cm?2 was achieved at 1.55 V using 1.0 mol/L KOH solution, with excellent durability of 40 h. This work provided a facile method for developing new bifunctional catalysts.  相似文献   

11.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

12.
The proper construction of high efficiency, low-cost, earth-abundant oxygen evolution reaction (OER) catalyst is essential for hydrogen formation by water splitting. A novel electrocatalyst with highly active OER performance was manufactured by a simple electroless deposition method of Ni-Fe-P-WO3 on nickel foam (NF). Benefiting from outstanding mass transfer capability of Ni-Fe-P-WO3/NF heterogeneous structure, abundance of active sites in the amorphous architecture and etc., the Ni-Fe-P-WO3/NF shows extremely superb electrocatalytic properties compare to noble metal catalyst IrO2/NF for OER, which needs an overpotential of only 218 mV in 1.0 M KOH solution to achieve the current density of 10 mA cm?2. It also has remarkable OER activity at high current density that only needs 298 mV to attain 100 mA cm?2 current density. Moreover, the Ni-Fe-P-WO3/NF has low Tafel slope of 42 mV dec?1. This study offers a novel approach to the production of OER multiphase electrocatalysts from oxides and alloys.  相似文献   

13.
The oxygen evolution reaction (OER) involves four electron transfer processes and is of great significance in water electrolysis. The development of efficient and robust non-precious OER electrocatalysts remains a critical challenge for the production, storage and conversion of renewable energy. Herein, vertically NiCo2O4 nanosheets are grown on Ti mesh via a facile solvothermal method which is followed by low-temperature calcination. The NiCo2O4/Ti catalyst exhibits outstanding OER performance with a low overpotential of 353 mV to drive the current density of 10 mA cm?2 and a Tafel slope of 61 mV dec?1 in alkaline solution. Moreover, the stable electrocatalyst undergoes negligible degradation in alkaline media at least 20 h. The acceleration of the electrochemical OER likely stems from the facile electron transfer promoted by the NiCo2O4/Ti interface as revealed by X-ray photoelectron spectroscopy. This work introduces a novel strategy for the establishment low-cost electrocatalysts for electrochemical water splitting.  相似文献   

14.
The construction of cost-effective bifunctional electrocatalysts with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for efficient overall water splitting. Herein, this work demonstrates a novel strategy for the synthesis of nickel-cobalt oxides/sulfides/phosphides composite (denoted as NiCoO–2P/S) nanoarrays on Ni foam. In this method, Ni–Co bimetallic oxide nanowires on Ni foam were partially phosphorized and sulfurized simultaneously in situ to yield Ni–Co oxide/sulfide/phosphide composite. The NiCoO–2P/S arrays have good interfacial effects and display many holes in the nanowires, giving it the advantage of large accessible surfaces on the nanowires and a beneficial for the release of gas bubbles, resulting in an excellent OER performance with a low overpotential (η) of 254 mV at 100 mA cm?2 and good HER activity (η10 = 143 mV at 10 mA cm?2). The electrocatalytic test results demonstrate small Tafel slopes (82 mV dec?1 for HER, 88 mV dec?1 for OER) and the satisfying durability in an alkaline electrolyte, indicating that the HER and OER activity was enhanced by the introduction of the Ni/Co sulfides and phosphides into Ni–Co oxides composite nanowires. Furthermore, the as-prepared NiCoO–2P/S catalyst can be used as both the anode and the cathode simultaneously to realize overall water splitting in the two-electrode electrolyzer. This system can be driven at low cell voltages of 1.50 and 1.68 V to achieve current densities of 10 and 100 mA cm?2, respectively. This work provides an alternative strategy to prepare high-performance bifunctional electrochemical materials and demonstrates the advantages of Ni–Co oxide/sulfide/phosphide composites for water splitting.  相似文献   

15.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   

16.
Herein, strongly coupled Ni3S2/MoS2 hollow spheres derived from NiMo-based bimetal-organic frameworks are successfully synthesized for overall water splitting via a one-pot solvothermal method followed by sulfurization. A well-defined hollow spherical structure with a heterointerface between Ni3S2 and MoS2 is constructed using solvothermal and sulfurization processes. Owing to their bimetallic heterostructure, porous hollow carbon structure with large surface area, and numerous exposed active sites, the Ni3S2/MoS2 hollow spheres are found to be efficient electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The heterostructured Ni3S2/MoS2 hollow spheres show small overpotentials of 303 and 166 mV to reach a current density of 10 mA cm?2 for the OER and HER in 1.0 M KOH, respectively. Furthermore, an overall water-splitting electrolyzer consisting of the Ni3S2/MoS2 hollow spheres as both the anode and cathode requires a very low cell voltage of 1.62 V to drive a current density of 10 mA cm?2 with outstanding long-term stability for 100 h. Our findings offer a new pathway for the design and synthesis of electrochemically advanced bifunctional catalysts for various energy storage and conversion applications.  相似文献   

17.
One of the current necessities to produce clean energy is the logical design of inexpensive noble-metal free electrocatalysts with developed structure and composition for electrochemical water splitting. In this study, we introduce a new core-shell-structured bifunctional electrocatalyst of NU-1000/CuCo2S4 for oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water splitting for the first time. Own to unique structure with rich porosity, high electrical conductivity, high stability and larger density of active sites, this nanocomposite can produce water electrolysis in a 1 M KOH solution. The electrochemical measurements show overpotentials of 335 mV for OER and 93 mV for HER at a current density of 10 mAcm−2. Also, the NU-1000/CuCo2S4 nanocomposite exhibits Tafel slope values of 110 mV dec−1 and 103 mV dec−1 for HER and OER, respectively. Besides, NU-1000/CuCo2S4 presents a significant long-term stability in a 72 h run. Additionally, NU-1000/CuCo2S4 requires 1.55 V to deliver 10 mA cm−2 current density in overall water splitting. According to these results, we hope to use this electrocatalyst in producing oxygen and hydrogen from water.  相似文献   

18.
The specific properties of easy manufacturing, open frameworks, and high specific surface area endow prussian blue analogues (PBAs) as promising electrode materials for water splitting. Herein, we reported the successful application of interface engineering strategy to introduce low content of Pt species to boost the electrocatalytic activity of FeCo PBAs by ammonia etching and subsequent calcination. The resulting PtCo alloy modified FeCo PBAs (PtCo–FeCo PBAs) complex reveals modest electrocatalytic activity with low overpotentials (η) of 139 mV for hydrogen evolution reaction (HER) and 310 mV for oxygen evolution reaction (OER) at 10 mA cm?2 in alkaline electrolyte. Remarkably, the PtCo–FeCo PBAs only required small cell voltage of 1.68 V to drive 10 mA cm?2 for overall water splitting and the ideal electrocatalytic activity can be maintained for more than 50 h at a current density of 10 mA cm?2. The structural analysis unveils that the strong interaction between FeCo PBAs host and PtCo alloy resulting in charge redistribution and ultimately lead to high electrocatalytic activity and stability of PtCo–FeCo PBAs for both HER and OER.  相似文献   

19.
Exploring efficient oxygen evolution reaction (OER) catalysts synthesized from low-cost and earth-abundant elements are crucial to the progression of water splitting. In this paper, NiFe layered double hydroxide (LDH) nanosheets were grown on Ni foam (NF) through a straightforward hydrothermal method. The Fe doping effects were systematically investigated by controlling Ni/Fe ratios and Fe valence states, and the in-depth influence mechanisms were discussed. The results indicate that, through controlling structure morphology and enhancing Ni2+ oxidation, NiFeIII(1:1)-LDH displays the best and outstanding OER performance, with a low over potential of 382 mV at 50 mA cm?2, a low Tafel slope of 31.1 mVdec?1 and only 20 mV increase after 10 h continuous test at 50 mA cm?2. To our knowledge, this is one of the best OER electrocatalysts in alkaline media to date. This work provides a facile and novel strategy for the fabrication of bimetallic LDH catalysts with desired structures and compositions.  相似文献   

20.
Transition metal catalysts were supposed to be the most likely substitute for commercial noble metal catalysts, and the development of highly active and long-term catalyst for water splitting are the future trend. Herein, Ni rectangular nitrogen doped carbon nanorods@Fe–Co nanocubes (Ni-CNRs@Fe–Co cubes) were fabricated via a facile template-free method. This simple strategy not only realizes the structure tailoring, but also achieves high-quality nitrogen-doping. Specifically, nickel dimethylglyoxime [Ni(dmg)2] with rectangular rodlike structure was firstly synthesized by solution method, then metal-organic frameworks Fe–Co nanocube with different contents were loaded on rectangular carbon nanorods with polydopamine as the locating and the connecting agent, and finally Ni-CNRs@xFe-Co cubes were obtained by a one-step calcination. A series of electrochemical tests were researched on materials with different metal contents in the 1 M KOH solution. The Ni-CNRs@Fe–Co cubes show excellent electrocatalytic activity in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). For HER and OER, the Tafel slopes were 83.3 mV dec−1 and 71 mV dec−1, the onset potential were −167 mV and 1.62 V, and reached the current densities of 10 mA cm−2, the overpotential just needed 196 mV and 433 mV, respectively. This novel synthetic strategy will provide a template-free way for cheap electrocatalysts of non-precious metal for OER and HER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号