首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this research, the surface of poly (vinylidene fluoride) (PVDF)/sulfonated polyethersulfone (SPES) blend membrane prepared via immersion precipitation was modified by depositing of TiO2 nano-particles followed by UV irradiation to activate their photocatalytic property. The membranes were characterized by FTIR, SEM, AFM, contact angle, dead end filtration (pure water flux and BSA solution flux), antifouling analysis and antibacterial activity. The FTIR spectrum confirmed the presence of OH functional groups on the PVDF/SPES membrane structure, which was the key factor for deposition, and self-assembly of TiO2 nanoparticles on the membrane surface. The SEM and AFM images indicated that the TiO2 nanoparticles were deposited on the PVDF/SPES membrane. The contact angle measurements showed that the hydrophilicity of PVDF/SPES membrane was strongly improved by TiO2 deposition and UV irradiation. The filtration results indicated that the initial flux of TiO2 deposited PVDF/SPES membranes was lower than the initial flux of neat PVDF/SPES membrane. However, the former membranes showed lower flux decline compared to the neat PVDF/SPES membrane. The BSA rejection of modified membranes was improved. The fouling analysis demonstrated that the TiO2 deposited PVDF/SPES membranes showed the fewer tendencies to fouling. The results of antibacterial study showed that the UV irradiated TiO2 deposited PVDF/SPES membranes possess high antibacterial property.  相似文献   

2.
Immobilized titanium dioxide (TiO2) nanoparticles on flat sheet polymeric membranes have been found effective for fouling reduction in recent researches. The main challenge in this field is to obtain ultrafine and stable nanodispersions. In this study, composite polyvinylidene fluoride/TiO2 (PVDF/TiO2) ultrafiltration membranes were prepared via phase inversion and colloidal precipitation method. Stable TiO2 suspensions were prepared using sodium polymethacrylate as dispersant and sonication without altering of the coagulation bath pH. The effect of different concentrations of TiO2 nanoparticles in the coagulation bath was also investigated. The membrane morphology (distribution of nanoparticles on the membrane surface) was observed by scanning electron and atomic force microscopy. Properties of the neat and the composite membranes were also characterized using energy dispersive X‐ray spectroscopy and contact angle and membrane porosity measurements. The neat and the composite membranes were further investigated in terms of bovine serum albumin rejection and flux decline in cross flow filtration experiments. The results showed that the PVDF/TiO2 composite membrane using dimethylacetamide/triethyl phosphate as solvent and 0.05 g/L of TiO2 in the coagulation bath exhibits improved antifouling properties. POLYM. ENG. SCI., 59:E422–E434, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) ultrafiltration (UF) membranes are widely used in drinking water and wastewater applications. These membranes are prone to fouling and membrane efficiency decreases with time under constant operation. Significant improvements/modifications are necessary to apply these polymers as sustainable membrane materials. In this study, PVDF and PAN UF membranes were modified through incorporation of nanoparticles (NPs) namely SiO2 and TiO2. PVDF and PAN UF membranes were prepared by phase inversion method from polymer solutions having dispersed SiO2 and TiO2 NPs in it. Membrane surface hydrophilicity, charge, roughness, and morphology were studied. Equilibrium water content and molecular weight cut-off of the membranes were also measured. Addition of NPs increased membrane surface hydrophilicity, equilibrium water content, and surface potential. NPs modified membranes exhibited better membrane flux (35–79% higher) and antifouling properties (flux recovery ratio values 28–41% higher) than the virgin membranes.  相似文献   

4.
To endow the surface of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes with hydrophilicity and antifouling property, physical adsorption of amphiphilic random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and poly(methyl methacrylate) (PMMA) (P(PEGMA‐r‐MMA)) onto the PVDF membrane was performed. Scanning electron microscopy (SEM) images showed that the adsorption process had no influence on the membrane structure. Operation parameters including adsorption time, polymer concentration, and composition were explored in detail through X‐ray photoelectron spectroscopy (XPS), static water contact angle (CA), and water flux measurements. The results demonstrated that P(PEGMA‐r‐MMA) copolymers adsorbed successfully onto the membrane surface, and hydrophilicity of the PVDF MF membrane was greatly enhanced. The antifouling performance and adsorption stability were also characterized, respectively. It was notable that PVDF MF membranes modified by facile physical adsorption of P(PEGMA58r‐MMA33) even showed higher water flux and better antifouling property than the commercial hydrophilic PVDF MF membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3112–3121, 2013  相似文献   

5.
Organic–inorganic polyvinylidene fluoride (PVDF)–titanium dioxide (TiO2) composite hollow fiber ultrafiltration (UF) membranes were prepared by TiO2 sol–gel method and blending method, respectively. The membranes were characterized in terms of microstructure, hydrophilicity, permeation performance, thermal stability, and mechanical strength. The experimental results indicated that PVDF–TiO2 composite UF membranes exhibited significant differences in surface properties and intrinsic properties because of the addition of inorganic particles. The TiO2 particles improved the membrane strength and thermal stability of PVDF–TiO2 composite UF membranes. In particular, hydrophilicity and permeability increased dramatically with the increase of TiO2, whereas the retention property of UF membranes was nearly unchanged. However, high TiO2 concentration induced the aggregation of particles, resulting in the decline of hydrophilicity and permeability. Compared with PVDF–TiO2 composite hollow fiber UF membranes prepared by TiO2 blending method, PVDF–TiO2 composite hollow fiber UF membranes prepared by TiO2 sol–gel method formed a dispersed inorganic network, and the stronger interaction between inorganic network and polymeric chains led to TiO2 particles being uniformly dispersed in UF membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Composite membranes of poly(vinylidene‐trifluoroethylene)/titanium dioxide (PVDF‐TrFE/TiO2) were prepared by the solution cast method. The crystallization behavior and dielectric properties of the composites with TiO2 calcined at different temperatures were studied. Transmission electron microscopy and X‐ray diffraction (XRD) results showed that the TiO2 nanoparticles calcined at different temperatures were well dispersed in the polymer matrix and did not affect the structure of the PVDF‐TrFE matrix. XRD and differential scanning calorimeter measurements showed that the crystallinity of PVDF‐TrFE/TiO2 composites increased as the addition of TiO2 with different calcination temperatures. The dielectric property testing showed that the permittivity of PVDF‐TrFE/TiO2 membrane increased rapidly with the increase of TiO2 content and the calcination temperature of TiO2 at constant TiO2 content, but the dielectric loss did not change much. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
A major factor limiting the use of ultrafiltration (UF) membrane in water treatment process is the membrane fouling by natural organic matter such as humic acid (HA). In this work, neat PVDF and PVDF/TiO2 mixed‐matrix membranes were prepared and compared in terms of their antifouling properties. Two commercial types of TiO2 namely PC‐20 and P25 were embedded to prepare the mixed matrix membranes via in situ colloidal precipitation method. The contact angles for the mixed‐matrix membranes were slightly reduced while the zeta potential was increased (more negatively charged) compared with the neat membrane. Filtration of HA with the presence of Ca2+ demonstrated that mixed‐matrix membrane could significantly mitigate the fouling tendency compared with the neat membrane with flux ratio (J/J0) of 0.65, 0.70, and 0.82 for neat PVDF membrane, PVDF/TiO2 mixed‐matrix membrane embedded with P25 and PC‐20, respectively. PC‐20 with higher anatase polymorphs exhibited better antifouling properties due to its hydrophilicity nature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
A photocatalytic activity ultrafiltration membrane (UFM) was prepared by the blending of a poly(vinylidene fluoride) (PVDF) polymer with mesoporous titanium dioxide (M‐TiO2) particles via the phase‐inversion method. The microstructure of the membrane and Ti element distribution were characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Their properties were also determined by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, tensile stress tests, contact angle tests, bovine serum albumin retention, water flux, and permeation flux. When the M‐TiO2 concentration reached 1 wt %, the thermal stability, mechanical properties, hydrophilicity, flux, and antifouling performance of the M‐TiO2/PVDF UFM were improved to an optimal value with the M‐TiO2 particles successfully entrapped and evenly distributed throughout the PVDF polymer matrix. Compared with the P25‐modified PVDF UFM (1 wt %), the M‐TiO2‐modified PVDF UFM (1 wt %) exhibited better photocatalytic activity and wonderful stability in the UV photocatalytic degradation of the organic dye Rhodamine B. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43427.  相似文献   

9.
Nitrogen-doped titanium dioxide (N–TiO2) was prepared and supported on a novel copolymer grafted membrane matrix to avoid the problems associated with the removal of spent photocatalyst from treated water. Membranes of poly (methacrylic acid) grafted onto poly (vinylidene difluoride) and blended with poly (acrylonitrile) (PMAA-g-PVDF/PAN) were prepared through a dry–wet phase inversion technique. Methacrylic acid side chains were grafted onto an activated PVDF backbone by the method of reversible addition fragmentation chain transfer polymerization and then the novel photocatalytic asymmetric membranes of N–TiO2–PMAA-g-PVDF/PAN were prepared. The casting solutions were blended with 1–5 % N–TiO2 before immersion into the coagulation bath. PVDF and PAN offer several advantages which include: mechanical strength and toughness, chemical resistance, unaffected by long-term exposure to UV radiation, low weight, and thermal stability. N–TiO2 was prepared through sol-gel synthesis. The photocatalytic membranes were evaluated by degradation process of herbicide bentazon in water. Photodegradation studies revealed that the optimum photocatalyst loading was 3 % N–TiO2 and the optimum pH was 7 for the degradation of bentazon in water. UV–Vis, TOC and LC–MS analyses confirmed the successful photodegradation of bentazon. A bentazon removal efficiency of 90.1 % was achieved at pH 7. N–TiO2–PMAA-g-PVDF/PAN membranes were successfully prepared and characterized. These photocatalytic membranes showed great potential as a technology for the effective removal of pesticides from water. According to literature, N–TiO2–PMAA-g-PVDF/PAN asymmetric photocatalytic membranes have not been prepared before for the purpose of treating agricultural wastewater.  相似文献   

10.
Poly(l ‐lactide) (PLLA)/TiO2 composite membranes were fabricated by immersion precipitation method. The resulting membranes were characterized using various methods including XRD, ATR‐FTIR, TGA, DSC, SEM, goniometer, and molecular weight cut‐off. The antifouling performance of the membrane was investigated through the filtration experiments of the oil/water emulsion. XRD, SEM, and ATR‐FTIR results indicated that TiO2 was successfully introduced into the membrane, while DSC and TGA indicated the enhancement of thermal stability of membrane. The improvement of membrane hydrophilicity was confirmed by goniometer. In addition, the pore size and porosity on the membrane surface varied obviously with increasing the TiO2 loading. It was concluded that PLLA/TiO2 composite membranes had better antifouling and recycling performance compared with the pure PLLA membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43542.  相似文献   

11.
Poly(phthalazine ether sulfone ketone) (PPESK) is a newly developed membrane material with superior thermal stability and comprehensive properties. Titanium dioxide (TiO2)‐entrapped PPESK ultrafiltration (UF) membranes were formed by dispersing uniformly nanosized TiO2 particles in the casting solutions. Initially, the inorganic nanoparticles were organically modified with silane couple reagent to overcome the aggregation and to improve the dispersibility in organic solvent. The membranes were prepared through the traditional phase inversion method. The effects of inorganic TiO2 nanoparticles on the membrane surface morphology and cross section structure were investigated using scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Water contact angle (CA) measurement was conducted to investigate the hydrophilicity and surface wettability of the membranes. The influence of TiO2 on the permeability, antifouling, and tensile mechanical properties of the PPESK membranes were evaluated by UF experiments and tensile tests. The experimental results showed that the obtained TiO2‐entrapped PPESK UF membranes exhibit remarkable improvement in the antifouling and mechanical properties because of the introduction of TiO2 nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3623–3629, 2007  相似文献   

12.
为改善聚偏氟乙烯(PVDF)膜的抗污性能,以聚乙二醇2000接枝的GO/TiO2(PEG/GO/TiO2)纳米复合材料为添加剂,通过非溶剂诱导沉淀相分离法制备了一系列PEG/GO/TiO2/PVDF复合超滤膜。采用FTIR、SEM和接触角测试仪对其结构和形貌进行了表征,采用超滤法评价其纯水通量和抗污性能。结果表明,当PEG/GO/TiO2纳米复合材料质量分数为0.60%时,制备的PEG/GO/TiO2/PVDF复合超滤膜(记为0.60%PEG/GO/TiO2/PVDF)表现出最佳的亲水性和抗污性能,其接触角比PVDF膜下降8.2°,总孔隙率增加13.40%,PEG/GO/TiO2纳米复合材料在PVDF膜中分散较均匀。在0.08 MPa的工作压力下,0.60%PEG/GO/TiO2/PVDF的纯水通量高达282.44 L/(m2·h),对腐植酸溶液的过滤通量为131.96 L/(m2...  相似文献   

13.
The aim of this study was to investigate the effect of pore-forming hydrophilic additives on the porous asymmetric polyvinylideneflouride (PVDF) ultrafiltration (UF) membrane morphology and transport properties for refinery produced wastewater treatment. PVDF ultrafiltration membranes were prepared via a phase inversion method by dispersing lithium chloride monohydrate (LiCl·H2O) and titanium dioxide (TiO2) nanoparticles in the spinning dope. The morphological and performance tests were conducted on PVDF ultrafiltration membranes prepared from a different additive content. The top surface and cross-sectional area of the membranes were observed using a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The surface wettability of porous membranes was determined by the measurement of a contact angle. The mean pore size and surface porosity were calculated based on the permeate flux. The results indicated that the PVDF/LiCl/TiO2 membranes with lower TiO2 nanoparticles loading possessed smaller mean pore size, more apertures inside the membrane with enhanced membrane hydrophilicity. LiCl·H2O has been employed particularly to reduce the thermodynamic miscibility of dope which resulted in increasing the rate of liquid–liquid demixing process. The maximum flux and rejection of refinery wastewater using PVDF ultrafiltration membrane achieved were 82.50 L/m2 h and 98.83% respectively at 1.95 wt.% TiO2 concentration.  相似文献   

14.
Poly(arylene sulfide sulfone) (PASS) is a kind of newly developed polymeric membrane material which has excellent mechanical strength, thermal stability, and solvent resistance. And, it would be a potential material for high temperature ultrafiltration and organic solvent filtration. In this article, PASS hybrid ultrafiltration membrane with improved antifouling property was prepared by mixing TiO2 nanoparticles which were grafted with polyacrylic acid (PAA). These membranes were prepared by a phase inversion technique and their separation performance and antifouling property of the prepared membranes were investigated in detail by SEM, FTIR, EDS, contact angle goniometry, filtration experiments of water, and BSA solution. The results shown that the TiO2g‐PAA nanoparticles dispersed well in membrane matrix, the hydrophilicity of the membranes prepared within TiO2g‐PAA nanoparticles have been improved and these membranes exhibited excellent water flux and antifouling performance in separation than that of the pure PASS membranes and PASS membranes with TiO2 nanoparticles. More specifically, among membrane sample M0, M1.5, and MP1.5, MP1.5 which contained 1.5 wt% TiO2g‐PAA exhibited the highest water permeation (190.4 L/m2 h at 100 kPa), flux recovery ratio, and the lowest BSA adsorption amount. POLYM. ENG. SCI., 55:2829–2837, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
The aim of this work is to prepare antifouling membrane with low-biofouling property by grafted functional polymer. Surface modification of poly(vinylidene fluoride) (PVDF) membrane was carried out via a modified and simple process by grafted poly(N-isopropylacrylamide) (PNIPAAm). The grafting density of PNIPAAm was significantly improved, up to 0.90 ± 0.38 mg/cm2, thereby improving the properties and performance of the membrane. The chemical composition, thermal stability and surface morphology of pristine and modified membranes had been characterized by attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscope (AFM), respectively. After modification, the hydrophilicity of PVDF membrane was dramatically enhanced due to incorporation of PNIPAAm chains. The results of protein adsorption, microfiltration experiments and bacterial adhesion test demonstrated that the modified membrane exhibited obvious thermo-sensitive property and good antifouling capability. The maximum of flux recovery ratio (FRR), 91.59%, was obtained for the modified membrane. It is evidently believed that protein foulants was removed easily from the modified membrane surface after water washing. In addition, bacterial adhesion test revealed that the attachment of Escherichia coli on the modified membrane was reduced by 75% compared to the original membrane.  相似文献   

16.
In this article, using the non‐solvent induced phase separation process, a new microporous membrane with the semi‐interpenetrating polymer network (semi‐IPN) structure was produced. For this membrane, polydimethylsiloxane (PDMS) polymer is crosslinking and poly(vinylidene fluoride) (PVDF) polymer is linear, by changing the mass ratio of PDMS/PVDF, the structure and the performance of the prepared membranes were studied. The membranes were also investigated by attenuated total reflection‐Fourier transform infrared (ATR‐FTIR), scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, thermogravimetric analysis, and water contact angle, etc. ATR‐FTIR spectroscopy confirmed the formation of semi‐IPN; compared with the PDMS/PVDF polymer without semi‐IPNs structure, the viscosity of the semi‐IPNs structured casting solution increased, membrane mechanical property increased but its hydrophobicity decreased. Using the resulting membranes for the vacuum membrane distillation desalt of the NaCl solution (30 g/L), 99.9% salt rejection and reasonable flux were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45792.  相似文献   

17.
A polyamide (PA) nanofiltration (NF) composite membrane with TiO2 layers was designed and prepared, in which the TiO2 layers were chemically linked to the crosslinked polyamide layers of the membrane. In this study, TiO2, one of the well known photo‐catalysts effectively degrading organics with UV light, was introduced to the PA NF membrane by using 3‐aminopropyltrimethoxysilane (APTMOS), titanium (IV) isopropoxide (TIP) to improve its antifouling property. In particular, for this membrane, SiO2 layers were formed between the TiO2 layer and the crosslinked polyamide layer of the membrane to protect the organic parts of the membrane from the TiO2 catalyzed UV degradation. The prepared membrane with TiO2 layers was then characterized using several analytical methods: scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), x‐ray diffraction (XRD) and permeation tests. It was found that the prepared membrane was stable; especially the TiO2 layer of the membrane was found to be stable after several times of use for permeation test. The membrane showed a typical NF property, despite of the presence of the TiO2 layer. From long time tests with or without UV light, it was found that there was good antifouling effect on the membrane by the TiO2 layer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
《分离科学与技术》2012,47(17):2345-2358
Abstract

Ultrafiltration involving sulfonated polysulfone membranes provides high efficiency for humic matter removal from water. The increase in ion-exchange capacity of the polymer matrix from 0.24 to 0.96 mmol SO3H groups per 1 g of dry membrane increases the membrane pore diameter and its hydrophilicity, and thus the permeate flux from 0.05 to 3.69 m3/m2·d. In order to decrease the manufacturing cost, membranes from polysulfone and sulfonated polysulfone blends were investigated. It was shown that a one-to-one blend resulted in a membrane having similar antifouling properties to pure sulfonated polysulfone. Both membranes reject humic matter in the 91–98% range and show a flux decline of 5–30% as a result of surface fouling.  相似文献   

19.
A novel polycarbonate (PC) membrane was modified with titanium dioxide via nonsolvent-induced phase separation method to improve its hydrophilicity and antifouling properties in a submerged membrane system for the removal of humic acid (HA) both with and without polyaluminum chloride (PAC) coagulant. The effect of TiO2 additive on the morphology and performance of the nanocomposite membranes was studied by atomic force microscopy, field emission scanning electron microscopy, energy dispersive X-ray, mechanical properties, water contact angle, porosity, pure water flux, rejection tests, and antifouling parameters. The obtained results revealed that a higher critical flux was achieved by the PC/TiO2 nanocomposite membrane. The flux recovery ratio of the neat PC membrane increased with the addition of TiO2 nanoparticles and without PAC coagulant. HA removal for the PC nanocomposite membrane was higher than that of the neat PC membrane with and without PAC coagulant.  相似文献   

20.
A thermo‐responsive membrane, poly(vinylidene fluoride) (PVDF‐g‐PNIPAAm), was successfully prepared from PVDF membrane through surface‐initiated atom transfer radical polymerization (ATRP) of a thermo‐responsive monomer, N‐isopropyl acrylamide (NIPAAm). The influence of the reaction time on ATRP was studied in detail. The grafting membrane was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS). The results showed that NIPAAm was successfully grafted on the PVDF membrane, the membrane pores became smaller and the reaction time of 36 h was in favor of surface‐initiated ATRP. The thermal stability of PVDF membrane and PVDF‐g‐PNIPAAm membranes was characterized by differential scanning calorimetry (DSC). Contact angles of membrane surface, water penetration and protein solution permeation were tested. Water contact angles of PVDF membrane reduced after the surface grafting of NIPAAm, which illuminated that the hydrophilicity of the grafted membrane was improved. The PVDF‐g‐PNIPAAm membranes exhibited good thermo‐responsive permeability and antifouling property. POLYM. ENG. SCI., 54:1013–1018, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号