首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploring stable catalysts with an efficient hydrogen evolution reaction (HER) arises intense concerns due to its renewable and low-cost properties. In this work, we have systematically investigated a two-dimensional (2D) material, namely, B4N monolayer as efficient HER electrocatalysts based on first-principles computations. When the material is metal-free, the calculated Gibbs free energy (ΔGH1) corresponding to hydrogen coverages of 2/4 reaches to 0.005 eV, which is better than that of the Pt catalyst. Moreover, we also find that the HER activity of the B4N monolayer is sensitive to the strains-driven. The single metal atom supported on B4N can still make the value of ΔGH1 close to 0 eV for Cr/B4N and V/B4N. These results reveal that the B4N monolayer is a promising candidate for HER applications.  相似文献   

2.
The development of effective and non-precious electrocatalyts for hydrogen evolution reaction (HER) has attracted massive research interests. Herein, we report a density functional theory (DFT) investigation on the activation and optimization of Molybdenum disulfide (MoS2) monolayer as efficient HER electrocatalysts by cobalt-nonmetal atom (X = B, C, N, P, Se) codoping. Our results show that three CoX-MoS2 (X = C, N, and Se) catalysts display enhanced HER performance with |ΔGH|s in the range of 0.12–0.23 eV. Careful electronic structure analysis manifests that the favorable H adsorption process on the MoS2 basal plane is induced by suitable in-gap states upon codoping. Furthermore, appropriate biaxial strain can help optimize the HER performance of these co-doped systems, e.g, the ΔGHs of CoC@MoS2, CoN@MoS2, and CoSe@MoS2 reaches 0.0 eV, ?0.04 eV, and ?0.01 eV at 1.86% tensile strain, 5% compressive strain, and 4% compressive strain, respectively. Our work offers a highly promising catalyst for HER and guides the atomic design of more efficient non-noble electrocatalysts.  相似文献   

3.
Two-dimensional (2D) B2O monolayer is considered as a potential hydrogen storage material owing to its lower mass density and high surface-to-volume ratio. The binding between H2 molecules and B2O monolayer proceeds through physisorption and the interaction is very weak, it is important to improve it through appropriate materials design. In this work, based on density functional theory (DFT) calculations, we have investigated the hydrogen storage properties of Lithium (Li) functionalized B2O monolayer. The B2O monolayer decorated by Li atoms can effectively improve the hydrogen storage capacity. It is found that each Li atom on B2O monolayer can adsorb up to four H2 molecules with a desirable average adsorption energy (Eave) of 0.18 eV/H2. In the case of fully loaded, forming B32O16Li9H72 compound, the hydrogen storage density is up to 9.8 wt%. Additionally, ab initio molecular dynamics (AIMD) calculations results show that Li-decorated B2O monolayer has good reversible adsorption performance for H2 molecules. Furthermore, the Bader charge and density of states (DOS) analysis demonstrate H2 molecules are physically absorbed on the Li atoms via the electrostatic interactions. This study suggests that Li-decorated B2O monolayer can be a promising hydrogen storage material.  相似文献   

4.
Understanding the Hydrogen Evolution Reaction (HER) process is fundamental to use hydrogen as a sustainable (clean and renewable) energy source. Using first-principles calculations, we study the HER process when Si-doped a h-BC2N single layer. The pristine BC2N presents semiconducting properties with a band gap of 1.6–2.0 eV, being appropriate as a catalytic in the water splitting process. When Si is incorporated into the BC2N monolayer, we obtain that the most stable site (lower formation energy) occurs when the Si atom replaces a C atom (SiC). The Si atom moves out of the plane forming a buckling structure and the semiconducting properties are maintaining without spin effects. However, SiB and SiN give rise to two unpaired spin electronic levels inside the band gap and a magnetic moment of 1 μB. The adsorption energies of an H2 molecule on the top of the Si atom are in the range of 50–100 meV, which are greater than the calculated ones for H2 adsorbed on graphene and h-BN nanosystems but still low to be considered as an optimized medium for hydrogen storage. In addition, we observe that dispersive forces (van der Waals interactions) are responsible for half part of the adsorption energies. Strain due to the difference between the atomic radius of Si and C as well as the less stability of the Si–H bonds compared to the C–H ones leads to the Gibbs free energy (ΔG1) for hydrogen adsorbed on SiC near zero, showing that Si-doped h-BC2N is a potential system for HER.  相似文献   

5.
At present, the precious metal Pt is a common catalyst for large-scale hydrogen evolution reaction (HER) production of hydrogen, but due to its high price and scarcity, finding an innovative catalyst has become the key to electrocatalytic hydrogen evolution. Here, the HER electrocatalytic activity of Janus MoXTe (X = S, Se) monolayers was investigated through first-principles calculations. Mo vacancy, X vacancy and Te vacancy were introduced into 2H, 1T, and 1T’ phase respectively and their stability was studied. The results show that the introduction of vacancy can improve the electrocatalytic hydrogen evolution performance. Particularly, the Gibbs free energies (ΔGH) of Te vacancy of 2H phase MoSTe and MoSeTe are close to zero (ΔGH = 0.03, −0.05 eV, respectively), and has the highest exchange current density. We further find that the conductivity of 2H phase MoSTe and MoSeTe is enhanced after introducing Te vacancy. In details, H get 1.86 and 1.43 e on VTe in 2H phase MoSTe and MoSeTe. The bond between S and H is more stable, H is better adsorbed on the catalyst, and the performance is improved. Our research provides a strategy for designing MoXTe monolayer electrocatalysts, which are predicted to be employed in HER catalysts with low cost and high performance.  相似文献   

6.
Hydrogen storage properties of co-functionalized 2D GaS monolayer have been systematically investigated by first-principles calculations. The strength of the binding energy of hydrogen (H2) molecules to the pristine GaS surface shows the physisorption interactions. Co-functionalized GaS sheet by Li, Na, K and Ca atoms enhanced the capacity of binding energies of hydrogen and strength of hydrogen storage considerably. Besides, DFT calculations show that there is no structural deformation during H2 desorption from co-functionalized GaS surface. The binding energies of per H2 molecules is found to be 0.077 eV for pristine GaS surface and 0.064 eV–0.37 eV with the co-functionalization of GaS surface. Additionally, in the presence of applied external electric field enhanced the strength of binding energies and it is found to be 0.09 eV/H2 for pristine GaS case and 0.19 eV/H2 to 0.38 eV/H2 for co-functionalized GaS surface. Among the studied GaS monolayer is found to be the superior candidate for hydrogen storage purposes. The theoretical studies suggest that the electronic properties of the 2D GaS monolayer show the electrostatic behavior of hydrogen molecules which confirms by the interactions between adatoms and hydrogen molecules before and after hydrogen adsorption.  相似文献   

7.
Searching advanced materials with high capacity and efficient reversibility for hydrogen storage is a key issue for the development of hydrogen energy. In this work, we studied systematically the hydrogen storage properties of the pure C7N6 monolayer using density functional theory methods. Our results demonstrate that H2 molecules are spontaneously adsorbed on the C7N6 monolayer with the average adsorption energy in the range of 0.187–0.202 eV. The interactions between H2 molecules and C7N6 monolayer are of electrostatic nature. The gravimetric and volumetric hydrogen storage capacities of the C7N6 monolayer are found to be 11.1 wt% and 169 g/L, respectively. High hardness and low electrophilicity provides the stabilities of H2–C7N6 systems. The hydrogenation/dehydrogenation (desorption) temperature is predicted to be 239 K. The desorption temperatures and desorption capacity of H2 under practical conditions further reveal that the C7N6 monolayer could operate as reversible hydrogen storage media. Our results thus indicate that the C7N6 monolayer is a promising material with efficient, reversible, and high capacity for H2 storage under realistic conditions.  相似文献   

8.
Based on the density functional theory, we investigate the electronic properties of the clusters M2B7 (M = Be, Mg, Ca) and their hydrogen storage properties systematically in this paper. Extensive global search results show that the global minimal structures of the three systems (Be2B7, Mg2B7 and Ca2B7) are heptagonal biconical structure, and the two alkaline earth metals are located at the top of the biconical. Chemical bonding analyses show that M2B7 clusters have 6σ and 6π delocalized electrons, which are doubly aromatic. At the wB97XD level, the three systems have good hydrogen storage capabilities. The hydrogen storage density of Be2B7 is as high as 23.03 wt%, while Mg2B7 and Ca2B7 also far exceed the hydrogen storage target set by the U.S. Department of Energy in 2017. Their average adsorption energies of H2 molecules all ranged from 0.1 eV/H2 to 0.48 eV/H2, which is fall in between physisorption and chemisorption. Extensive Born Oppenheimer molecular dynamics (BOMD) simulations show that the H2 molecules of the three systems can be completely released at a certain temperature. Therefore, M2B7 systems can achieve reversible adsorption of H2 molecules at normal temperature and pressure. It can be seen that the B7 clusters modified by alkaline earth metals may become a promising new nano-hydrogen storage material.  相似文献   

9.
Hydrogen storage properties of Li functionalized B2S honeycomb monolayers are studied using density functional theory calculations. The binding of H2 molecules to the clean B2S sheet proceeds through physisorption. Dispersed Li atoms on the monolayer surface increase both the hydrogen binding energies and the hydrogen storage capacities significantly. Additionally, ab initio molecular dynamics calculations show that there is no kinetic barrier during H2 desorption from lithiated B2S. Among the studied B8S4Lix (x = 1, 2, 4, and 12) compounds, the B8S4Li4 is found to be the most promising candidate for hydrogen storage purposes; with a 9.1 wt% H2 content and 0.14 eV/H2 average hydrogen binding energy. Furthermore, a detailed analysis of the electronic properties of the B8S4Li4 compound before and after H2 molecule adsorption confirms that the interactions between Li and H2 molecules are of electrostatic nature.  相似文献   

10.
The B6Be2 and B8Be2 clusters, adopting fascinating inverse sandwich-like geometries, were recently predicted with quantum chemical calculations. Both systems exhibit the high stability and double aromaticity with 4σ/6π or 6σ/6π delocalized electrons. The hydrogen storage of two systems is studied in the present paper. Our calculations show that B6Be2 and B8Be2 clusters have the ultra-high capacity hydrogen storage, each Be site can bound up with seven H2 molecules, corresponding to a gravimetric density of 25.3 wt percentage (wt%) for B6Be2 and 21.1 wt% for B8Be2, respectively, which far exceeds the target (5.5 wt%) proposed by the US department of energy (DOE) in 2017. The average absorption energies of 0.10–0.45 eV/H2 for B6Be2 and 0.11–0.50 eV/H2 for B8Be2 at the wB97XD level suggest that both systems are ideal for reversible hydrogen storage and release. The reversibility of H2 molecules on B6Be2 and B8Be2 complexes are faithfully demonstrated with the Born-Oppenheimer molecular dynamics (BOMD) simulations. The Be-doped boron nanostructure is a promising candidate for ultra-high hydrogen storage materials.  相似文献   

11.
The potential application of pristine Be2N6 monolayer and Li-decorated Be2N6 monolayer for hydrogen storage is researched by using periodic DFT calculations. Based on the obtained results, the Be2N6 monolayer gets adsorb up to seven H2 molecules with an average binding energy of 0.099 eV/H2 which is close to the threshold energy of 0.1 eV required for practical applications. Decoration of the Be2N6 monolayer with lithium atom significantly improves the hydrogen storage ability of the desired monolayer compared to that of the pristine Be2N6 monolayer. This can be attributed to the polarization of H2 molecules induced by the charge transfer from Li atoms to the Be2N6 monolayer. Decoration of Be2N6 monolayer with two lithium atoms gives a promising medium that can hold up to eight H2 molecules with average adsorption energy of 0.198 eV/H2 and hydrogen uptake capacities of 12.12 wt%. The obtained hydrogen uptake capacity of 2Li/Be2N6 monolayer is much higher than the target set by the U.S. Department of Energy (5.5 wt% by 2020). Based on the van't Hoff equation, it is inferred that hydrogen desorption can occur at TD = 254 K for 2Li/Be2N6 (8H2) system which is close to ambient conditions. This is a remarkable result indicating important practical applications of 2Li/Be2N6 medium for hydrogen storage purposes.  相似文献   

12.
This work explored the feasibility of Li decoration on the B4CN3 monolayer for hydrogen (H2) storage performance using first-principles calculations. The results of density functional theory (DFT) calculations showed that each Li atom decorated on the B4CN3 monolayer can physically adsorb four H2 molecules with an average adsorption energy of ?0.23 eV/H2, and the corresponding theoretical gravimetric density could reach as high as 12.7 wt%. Moreover, the H2 desorption behaviors of Li-decorated B4CN3 monolayer at temperatures of 100, 200, 300 and 400 K were simulated via molecular dynamics (MD) methods. The results showed that the structure was stable within the prescribed temperature range, and a large amount of H2 could be released at 300 K, indicative of the reversibility of hydrogen storage. The above findings demonstrate that the Li-decorated B4CN3 monolayer can serve as a favorable candidate material for high-capacity reversible hydrogen storage application.  相似文献   

13.
The hydrogen storage capacity of M-decorated (M = Li and B) 2D beryllium hydride is investigated using first-principles calculations based on density functional theory. The Li and B atoms were calculated to be successfully and chemically decorated on the Surface of the α-BeH2 monolayer with a large binding energy of 2.41 and 4.45eV/atom. The absolute value was higher than the cohesive energy of Li and B bulk (1.68, 5.81eV/atom). Hence, the Li and B atoms are strongly bound on the beryllium hydride monolayer without clustering. Our findings show that the hydrogen molecule interacted weakly with B/α-BeH2(B-decorated beryllium hydride monolayer) with a low adsorption energy of only 0.0226 eV/H2 but was strongly adsorbed on the introduced active site of the Li atom in the decorated BeH2 with an improved adsorption energy of 0.472 eV/H2. Based on density functional theory, the gravimetric density of 28H2/8li/α-BeH2) could reach 14.5 wt.% higher than DOE's target of 6.5 wt. % (the criteria of the United States Department of Energy). Therefore, our research indicates that the Li-decorated beryllium hydride monolayer could be a candidate for further investigation as an alternative material for hydrogen storage.  相似文献   

14.
Here, we report a theoretical design of transition metals (TMs) anchored two-dimensional (2D) holey graphyne (HGY) based catalyst for the hydrogen evolution reaction (HER) through state-of-art density functional theory (DFT) simulation. The studied TMs (Co, Fe, Cr) are bonded strongly on HGY surface due to charge transfer from d orbital of metal to C 2p orbital of HGY. The HGY+TMs systems are stable at room temperature as evident from ab-initio molecular dynamics (AIMD) simulation. We predicted that the Co, Fe and Cr anchored HGY are highly active for HER activity with Gibbs free energy (ΔG) value as low as −0.21, −0.14, and −0.05 eV respectively and which are close to the best-known HER catalyst (Pt metal). The enhanced HER performance is attributed to the increased conductivity as well as redistribution of electrons. As pristine HGY is experimentally synthesized, HGY+TMs (Co, Fe, Cr) systems can be as an efficient catalyst for H2 production.  相似文献   

15.
In this work, we report on the study of the hydrogen storage capability of titanium (Ti) decorated B36 nanosheets using density functional theory (DFT) calculations with van der Waals corrections. Ti atoms are strongly bonded to the surface of B36 with a binding energy of 6.23 eV, which exceeds the bulk cohesive energy of crystalline Ti. Ti-decorated B36 (2Ti@B36) can reversibly adsorb up to 12 H2 molecules with a hydrogen storage capacity of 4.75 wt % and average adsorption energy between 0.361 and 0.674 eV/H2. The values of desorption temperature and the results of molecular dynamics simulations enable to conclude that 2Ti@B36 is a perspective reversible material for hydrogen storage under real conditions.  相似文献   

16.
Molybdenum disulfide (MoS2) has been considered a promising high-efficiency, low-cost hydrogen evolution reaction (HER) catalyst in acidic and alkaline media. However, the lack of active sites in the basal plane become the most significant obstacle hindering the widespread application of MoS2. Here, we systematically studied the HER performance of MoS2 plane or edge by co-doping Co atom and other 3d transition metals (TM = Ti–Fe, Ni) by density functional theory calculation methods. Interestingly, the dual atoms doping in both the basal plane and edges of MoS2 is a feasible fabrication with small or negative formation energies. Compared with the pristine MoS2 electrocatalyst, the HER performance in these doped systems is largely enhanced in both basal plane and edges due to the effective charge regulation on the S site by dual atom doping. Remarkably, close to zero H adsorption free energy (ΔGH = ?0.161–0.119 eV) is identified for the TM-Co co-doped MoS2 basal, indicating that they are potential alternate HER electrocatalysts of Pt. Our study provides a new strategy to design highly efficient non-noble metal electrocatalysts accessibility for energy-related applications.  相似文献   

17.
In this paper, first-principle calculations based on density functional theory (DFT) were used to investigate the performance and mechanism of the hydrogen evolution reaction (HER) on the typical active (001) facet of the novel electrocatalyst Ni2B. There were two types of atomic distribution on the Ni2B (001) surface, namely the B-rich surface and the Ni-rich surface. The investigation of the reaction mechanism revealed that the Volmer-Heyrovsky mechanism was easier to be realized on this Ni2B (001) facet, and the Heyrovsky reaction was the reaction rate-determining step. The Gibbs free energy(ΔGH) on the B-rich surface was - 0.02 eV, which was closer to 0 eV than that on the Ni-rich surface of Ni2B (001). The HER reactivity on the Ni-rich surface was increased by Cr-doping (ΔGH = - 0.01 eV), which indicated that the introduction of other transition metal atoms might effectively increase the HER electrocatalysis activity of Ni2B (001) surface. This work paves a new avenue for exploring efficient and durable non-precious metal electrocatalysts for HER in acidic medium.  相似文献   

18.
The polynuclear borane anions nido-B11H14, closo-B10H102− and closo-B12H122− undergo heterogeneous transition metal-catalyzed hydrolysis to generate hydrogen. The rate of hydrolysis is dependent upon the concentration of polynuclear borane anions and surface area of the metallic catalyst. The aqueous solutions of polynuclear borane anions, especially the closo-B10H102− and closo-B12H122− dianions, are very stable for an extended period of time (years) in the absence of catalyst and spontaneously generate hydrogen in the presence of a rhodium metal catalyst. These polynuclear borane anions have a high potential for use in portable hydrogen storage systems without requiring high pH aqueous media for storage as in the case of NaBH4.  相似文献   

19.
In this work, adsorption of H2 molecules on heteroborospherene C2v C4B32 decorated by alkali atoms (Li) is studied by density functional theory calculations. The interaction between Li atoms and C4B32 is found to be strong, so that it prevents agglomeration of the former. An introduced hydrogen molecule tilts toward the Li atoms and is stably adsorbed on C4B32. It is obtained that Li4C4B32 can store up to 12H2 molecules with hydrogen uptake capacity of 5.425 wt% and average adsorption energy of ?0.240 eV per H2. Dynamics simulation results show that 6H2 molecules can be successfully released at 300 K. Obtained results demonstrate that Li decorated C4B32 is a promising material for reversible hydrogen storage.  相似文献   

20.
Employing first-principles calculations, we have studied the structure, stability and hydrogen storage efficiency of pristine and defective BC3 and C3N monolayer functionalized by a variety of single metal adatoms. It is found that single Sc adatom, acting as an optimal dopant on perfect BC3 monolayer, is able to adsorb up to nine H2 molecules as strongly as around 0.24 eV/H2, which allows for a hydrogen storage capacity of 7.19 wt% for Sc atoms stably adsorbing on double sides of BC3 monolayer with eighteen H2 molecules (18H2@2Sc/BC3). Moreover, the desorption temperature and thermodynamical stability of multiple H2 adsorbed Sc-decorated BC3 sheet have been addressed and the saturate configuration of 18H2@2Sc/BC3 is predicted to be stable at mild temperatures and pressures, i.e. less than 250 K at 1 bar, or larger than 24 bar at room temperature. This study indicates that the Sc-decorated BC3 monolayer could be a potential H2 storage candidate, and provides an instructive guidance for designing metal-functionalized carbon-based sheets in hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号