首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, a nanocomposite graphene oxide (GO) incorporated poly (dimethyl siloxane) (PDMS) membrane was produced and used for the purification of hydrogen (H2) by separating the (CO2). The produced membrane was characterized and the single-gas permeability test was performed. Effects of GO addition, trans-membrane pressure and membrane thickness on the gas separation performance of membrane were evaluated as a function of permeability and CO2/H2 selectivity. GO addition increased the CO2/H2 selectivity and H2 purification performance. The highest CO2 permeability of 3670 Barrer and CO2/H2 selectivity of 11.7 were obtained when the GO loading was 0.5 wt% when the trans-membrane pressure was 0.2 Mpa.  相似文献   

2.
The incompatibility between nanofillers and polymer, caused by the agglomeration of nanoparticles and their weak interaction with each other, is still a challenge to develop mixed matrix composite membrane. Herein, we introduced the ZIF-8-TA nanoparticles synthesized by in situ hydrophilic modification into the hydrophilic poly(vinylamine) (PVAm) matrix to prepare composite membranes for H2 purification. The dispersion of ZIF-8 in water was improved by tannic acid modification, and the compatibility between ZIF-8 particles and PVAm matrix was enhanced by chemical crosslinking between the quinone groups in oxidized tannic acid (TA) and the amino groups in PVAm. Moreover, the compatibility between hydrophobic polydimethylsiloxane (PDMS) gutter layer and hydrophilic separation layer was achieved by the adhesion of TA-Fe3+ complex to the surface of PDMS layer during membrane preparation. The interlayer hydrophilic modification and the formation of separation layer were accomplished in one step, which simplified the preparation process. The experimental results indicated that when the TA addition used for modification was 0.5 g and the ZIF-8-TA0.5 content in membrane was 12 wt%, the prepared membrane showed the best separation performance with the CO2 permeance of 987 GPU and the CO2/H2 selectivity of 31, under the feed gas pressure of 0.12 MPa.  相似文献   

3.
Single-crystal magnetic-responsive core-shell MOF by grafting Fe3O4 nanoparticles onto the UiO-66-NH2 and their controlled embedding into gas separation mixed matrix membranes was reported. Obtained results confirmed the stimuli-responsive character of the MMOF during their dispersion of MMOF in a well-defined arrays structure in the PMMA matrix. Contrarily, an absence of a magnetic field results in the MMOF aggregation and sedimentation of the particles at the bottom of the membrane. Compared to the non-controlled ones, gas permeability increased by 26.2% for CO2 and 76.67% for H2, and selectivity increased 2.95 and 1.49 times for the CO2/N2 and H2/CO2 gas pairs, respectively. Moreover, obtained permeability-selectivity values for the H2/CO2 gas pairs overcome the appropriate modified 2008 Robeson upper bound.  相似文献   

4.
Polymeric membranes offer economic separation processes but are less explored for H2 separation application. This work aims to unveil the H2 separation potential of polymeric membrane by developing PVA-based reverse selective composite membrane. CO2-selective PEBAX was blended at different PVA:PEBAX ratio. The effect of PEBAX blending on membrane morphology, crystallinity and gas separation behavior was studied. Incorporation of PEBAX at <50 wt% resulted in composite with improved CO2 permeability but selectivity loss. Blending of >60 wt% PEBAX enhanced both permeance and selectivity of the resulted composite as the host matrix was dominated by this PEO containing material thus greatly enhancing polymer chain mobility and promoting CO2-solubility. The best composite which contains 60 wt% PEBAX exhibited CO2 permeability of 20.0 Barrer and CO2/H2 selectivity of 7.6. This performance surpasses the Robeson's boundary and unleashes the potential of tailoring the properties of polymeric nanocomposite membrane for H2 separation application through facile PVA/PEBAX blending.  相似文献   

5.
Metal organic frameworks (MOFs) with marvelous properties have aroused enormous attention for different application especially gas adsorption and separation. In this regard, fabrication of MOF hybrids with carbon based materials is new strategy to upgrade MOF performance. In this study CuBTC (Copper benzene-1,3,5-tricarboxylic acid)/graphene oxide (GO) composite was synthesized and characterized by BET, SEM, TGA, XRD and FT-IR techniques. Then CuBTC and CuBTC/GO composite were incorporated into polysulfone (PSF) polymer to construct mixed matrix membranes (MMMs). The obtained membranes were characterized by SEM, TGA, XRD and tensile tests and their gas permeability was measured. The results were compared to those of CuBTC/PSF MMMs. It was revealed that CuBTC/GO composite as filler showed superior performance relative to CuBTC. For instance, 15 wt% loading of CuBTC/GO in PSF represented outstanding gas separation behavior while the same loading of CuBTC in PSF deteriorated performance of MMM. Well particle dispersion and favorable polymer-filler interaction were responsible for such observed difference. A high H2/CH4 and H2/N2 selectivity of 80.03 and 70.46 were recorded for CuBTC/GO in PSF (15 wt%) compared to 44.56 and 40.92 for CuBTC in PSF (15 wt%).  相似文献   

6.
To rationalize the energy requirements and environmental complications of the world, supply of pure hydrogen is the most promising as well best possible approach of such issues. Purified hydrogen gas is the necessity factor for the hydrogen-based economy. Hydrogen perm-selective membrane plays a crucial role for producing a large amount of hydrogen. Palladium is one of the best materials because of its excellent affinity to absorb hydrogen. In present work, our aim to improve selectivity as well permeability of the H2 gas compare to N2 and CO2 gases of the block copolymer coated functionalized porous PET membrane. Porous polyethylene terephthalate (PET) membranes having pore size 0.2 μm, functionalized with a carboxyl group. The supramolecular assembly was prepared from PS (35500)-b- P4VP (4400) and 2-(4- Hydroxyphenylazo) benzoic acid (HABA) in 1, 4-dioxane. Chemically synthesized palladium nanoparticles were deposited on carboxylated block copolymer (BC) coated porous PET membrane. It is an appropriate way to use H2 sensitive materials with block copolymer coated functionalized membranes to enhance the selectivity of H2. It has been found that such membranes gain better permeability and selectivity towards H2 as compared with N2 and CO2. Increment with the dipping time of these membranes in the palladium nanoparticle solution, permeability as well selectivity of H2 over N2, CO2 increases as the more attachment of Palladium nanoparticles. A fine active layer of block copolymer on the carboxyl functionalized PET membrane play a crucial role for hydrogen based gas separation. The magnitude of the permeability of such membranes for different gases shows dependency on the pore size of the upper layer (BC coated) of the membrane in addition to the molecule size of the permeating gas. Block copolymer coating of the membranes established an effective responsibility for the selectivity of H2 over CO2 gas as well over N2 gas.  相似文献   

7.
The objective of this work is to prepare a functional copolymer of poly(acrylonitrile)-co-poly(2-Acrylamido-2-methyl-1-propanesulfonic acid) (PAN-co-PAMPS) and impregnation of graphene oxide (GO) into the copolymer followed by crosslinking to prepare conetwork composite membranes by simple and cost effective solution casting method and evaluating their structural, morphological, thermal, and mechanical properties. The successful incorporation of different amounts of GO content (0.1–1 wt%) within the polymer matrix was confirmed by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The mechanical properties of the prepared crosslinked composite membranes are found to be greatly enhanced by the addition of GO in the copolymer matrix. The thermogravimetric analysis (TGA) demonstrated considerable improvements in thermal stability for the composite membrane with low GO content. The effect of loading of GO in the copolymer matrix on proton conductivity and fuel cell performance has been studied systematically. The membranes prepared by mixing with 0.5 wt% GO in the copolymer followed by crosslinking exhibited maximum ionic conductivity (Km), lower methanol permeability (PM), and higher relative selectivity. This observed PM value is much lower range from 3.02 × 10?7 to 11.9 × 10?7 cm2/s compared to the Nafion® 117 membrane (22 × 10?7 cm2/s). The fuel cell performance in terms of maximum power density and current density and the durability of the crosslinked composite membranes have also been evaluated here. Low PM, high Km, and high selectivity values show that functional co-polymer/GO crosslinked co-network composite membrane is a promising alternative membrane separator to replace the expensive Nafion® 117 for proton exchange membrane fuel cells (PEMFCs) application.  相似文献   

8.
Here we proposed the decreasing in the roughness of asymmetric alumina (Al2O3) hollow fibers by the deposition of a thin graphene oxide (GO) layer. GO coated substrates were then used for palladium (Pd) depositions and the composite membranes were evaluated for hydrogen permeation and hydrogen/nitrogen selectivity. Dip coating of alumina substrates for 45, 75 and 120 s under vacuum reduced the surface mean roughness from 112.6 to 94.0, 87.1 and 62.9 nm, respectively. However, the thicker GO layer (deposited for 120 s) caused membrane peel off from the substrate after Pd deposition. A single Pd layer was properly deposited on the GO coated substrates for 45 s with superior hydrogen permeance of 24 × 10−7 mol s−1m−2 Pa−1 at 450 °C and infinite hydrogen/nitrogen selectivity. Activation energy for hydrogen permeation through the Al2O3/GO/Pd composite membrane was of 43 kJ mol−1, evidencing predominance of surface rate-limiting mechanisms in hydrogen transport through the submicron-thick Pd membrane.  相似文献   

9.
The hydrogen-based economy is one of the possible approaches toward to eliminate the problem of global warming, which are increases because of the gathering of greenhouse gases. Palladium (Pd) is well-known material having a strong affinity to the hydrogen absorbing property and thus appropriate material to embed in the membrane for the improvement of selective permeation of hydrogen gas. In present work, we have functionalized polycarbonate (PC) membranes with the help of UV irradiation to embed the Pd nanoparticles in pores as well as on the surface of the PC membrane. Use of Pd Nanoparticles is helpful to enhance the H2 selectivity over other gases (CO2, N2, etc.). Also, the UV based modification of membrane increases the attachment of Pd Nanoparticles. Further to enhance the Pd nanoparticles attachment, we used PVP binder with Pd nanoparticles solution. Gas permeability measurements of functionalized PC membranes have been carried out, and better selectivity of hydrogen has been found in the functionalized and Pd nanoparticle binded membrane. PC membrane with 48 h UV irradiated and Pd NPs with PVP have been found to have maximum selectivity and permeability for H2 gas. All the samples being characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and UV–Vis spectroscopy for their morphological and structural investigation.  相似文献   

10.
Industrial hydrogen production may prefer CO2-selective membranes because high-pressure H2 can therefore be produced without additional recompression. In this study, high performance CO2-selective membranes are fabricated by modifying a polymer–silica hybrid matrix (PSHM) with a low molecular weight poly(ethylene glycol) dimethyl ether (PEGDME). The liquid state of PEGDME and its unique end groups eliminate the crystallization tendency of poly(ethylene glycol) (PEG). The methyl end groups in PEGDME hinder hydrogen bonding between the polymer chains and significantly enhance the gas diffusivity. In pure gas tests, the membrane containing 50 wt% additive shows CO2 gas permeability and CO2/H2 selectivity of 1637 Barrers and 13 at 35 °C, respectively. In order to explore the effect of real industrial conditions, the gas separation performance of the newly developed membranes has been studied extensively using binary (CO2/H2) and ternary gas mixtures (CO2/H2/carbon monoxide (CO)). Compared to pure gas performance, the second component (H2) in the binary mixed gas test reduces the CO2 permeability. The presence of CO in the feed gas stream decreases both CO2 and H2 permeability as well as CO2/H2 selectivity as it reduces the concentration of CO2 molecules in the polymer matrix. The mixed gas results affirm the promising applications of the newly developed membranes for H2 purification.  相似文献   

11.
In this work, track-etched poly (ethylene terephthalate) (PET) membranes having different pore sizes were functionalized by the carboxylic groups and the amino groups. Palladium (Pd) nanoparticles of average diameter 5 nm were synthesized chemically and deposited onto pore walls as well as on the surface of these pristine and functionalized membranes. Effect of Pd nanoparticles binding on these membranes were explored and aminated membrane were found to bind more Pd nanoparticles due to its affinity. The morphology of these composite membranes is characterized by Scanning Electron Microscope (SEM) for confirmation of Pd nanoparticle deposition on pore wall as well as on the surface. Gas permeability of functionalized and non-functionalized membranes for hydrogen and carbon dioxide has been examined. From the gas permeability data of hydrogen (H2) and carbon dioxide (CO2) gases, it was observed that these membranes have higher permeability for H2 as compared with CO2. Due to absorption of hydrogen by Pd nanoparticles selectivity of H2 over CO2 was found higher as compared to without Pd embedded membranes. Such type of membranes can be used to develop hydrogen selective nanofilters for purification/separation technology.  相似文献   

12.
In this work, nanopalladium catalysts supported on the surface of reduced graphene oxide (rGO/Pd) with different palladium loadings have been prepared by one-step reduction in aqueous phase. They were mixed with 1,4-bis(phenylethynyl)benzene (DEB) to form rGO/Pd-DEB composites according to a mass ratio of 1:3. It was shown that nanopalladium particles with particle size of about 2–6 nm were disperse uniformly on the surface of rGO when the Pd loadings were in the range of 3.97–10.60 wt%. The maximum hydrogen uptake capacity of rGO/Pd-DEB composites at 25 °C determined according to PCT method was about 182.5 ml/g after reacted with hydrogen for about 20 h, which was some lower than that of the common Pd/C-DEB pallet getter (216 ml/g) but significantly higher than alkynyl modified polyvinyl alcohol supported palladium hydrogen absorbing materials (0.32 ml/g), indicating that rGO/Pd could be used in solid phase catalytic hydrogenation due to the high dispersion of palladium nanoparticles and the physical proximity of rGO/Pd catalyst with DEB organic molecules. This provides a good potential technical way for perparing the moldable carbon aerogel hydrogen absorption materials.  相似文献   

13.
The molecular-level mixed matrix membranes (MMMs) comprising Pebax® and POSS have been developed by tuning the membrane preparation process in this work. They exhibit a simultaneous enhancement in CO2 permeability and CO2/H2 selectivity by optimizing the POSS content at extremely low loadings. This is mainly attributed to the large cavity of POSS itself and its effect on the segmental-level polymeric chain packing. More interestingly, the Pebax®/POSS MMMs reveal a much higher separation performance in the mixed gas test than that in the pure gas test. The highest CO2/H2 selectivity reaches 52.3 accompanied by CO2 permeability of 136 Barrer at 8 atm and 35 °C. This is due to the CO2-induced plasticization that improves the free volume and polymer chain mobility, hence benefiting the interaction between the polymer matrix and penetrant CO2. These features may ensure the superiority of Pebax®/POSS molecular-level MMMs as CO2-selective membranes in the industrial application of hydrogen purification.  相似文献   

14.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

15.
The ability of (dimethyl siloxane) (PDMS) and SAPO 34 membrane modules to separate a H2/CO2 gas mixture was investigated in a continuous permeation system in order to decide if they were suitable to be coupled to a biological hydrogen production process. Permeation studies were carried out at relatively low feed pressures ranging from 110 to 180 kPa. The separation ability of SAPO 34 membrane module appeared to be overestimated since the effect concentration polarization phenomena was not taken into consideration in the permeation parameter estimation. On the other hand, the PDMS membrane was the most suitable to separate the binary gas mixture. This membrane reached a maximum CO2/H2 separation selectivity of 6.1 at 120 kPa of feed pressure. The pressure dependence of CO2 and H2 permeability was not considerable and only an apparent slight decrease was observed for CO2 and H2. The mean values of permeability coefficients for CO2 and H2 were 3285 ± 160 and 569 ± 65 Barrer, respectively. The operational feed pressure found to be more adequate to operate initially the PDMS membrane module coupled to the fermentation system was 180 kPa, at 296 K. In these conditions it was possible to achieve an acceptable CO2/H2 separation selectivity of 5.8 and a sufficient recovery of the CO2 in the permeate stream.  相似文献   

16.
Hydrogen purification based on Pd deposition in porous polymeric membranes show promising results for hydrogen permeability and selectivity. It is due to high absorption property of Pd nanoparticles. In this work, gas permeability of carboxylic group functionalized Polyethylene terephthalate (PET) membranes with different time of functionalization have been examined. It has been found that PET membrane having more –COOH group shows higher selectivity for Hydrogen (H2). Further to improve the selectivity, these carboxylated PET membranes dipped in Pd nanoparticles solution for 6 h and found more selective for H2 in comparison to Carbon dioxide (CO2) and Nitrogen (N2). As the carboxylation increases selectivity of H2 improves drastically in the beginning and nearly get saturated after 24 h. Similar trend has been observed for these membranes after Pd nanoparticles deposition. Fourier transform infrared spectroscopy (FTIR) spectra of these membranes revealed that intensity of peaks related to –COOH group at 2968 cm?1 & 1716 cm?1 increases with functionalization time. Field Emission Scanning Electron Microscopy (FESEM) was used to study the surface morphology of membranes.  相似文献   

17.
Combination of the reactions by means of membrane separation techniques are of interest. The CO2 methanation was combined with NH3 decomposition by in situ H2 separation through a Pd membrane. The CO2 methanation reaction in the permeate side was found to significantly enhance the H2 removal rate of Pd membrane compared to the use of sweep gas. The reaction rate of CO2 methanation was not influenced by H2 supply through the Pd membrane in contrast to NH3 decomposition in the retentate side. However, the CH4 selectivity could be improved by using a membrane separation technique. This would be caused by the active dissociated H species which might immediately react with adsorbed CO species on the catalysts to CH4 before those CO species desorbed. From the reactor configuration tests, the countercurrent mode showed higher H2 removal rate in the combined reaction at 673 K compared to the cocurrent mode but the reaction rate in CO2 methanation should be improved to maximize the perfomance of membrane reactor.  相似文献   

18.
The reverse water gas shift (RWGS) process is considered a feasible method for lowering greenhouse gas emissions by utilizing CO2 and converting it to CO. Herein, we evaluated the catalytic conversion of CO2 through the RWGS reaction over transition metal nanoparticles supported on lanthanum. Catalysts of selected active metals (Cu, Ni, and CuNi) on lanthanum oxide support were investigated in a packed bed tubular reactor within a temperature range of 100–600 °C to assess their catalytic activity and selectivity towards CO. The results of the catalyst's activity and stability experiments showed maximum CO2 conversions of 57%, 68% and 74% for Cu–La2O3, Ni–La2O3, and CuNi–La2O3, respectively, at 600 °C and excellent stability over a 1440-min time on stream (TOS) with a carbon deposition rate of less than 3 wt%. However, among all investigated catalysts, only the 1 wt% Cu–La2O3 catalyst displayed a CO selectivity of 100% at all the studied temperatures, whereas the nickel-containing catalysts showed selectivity for methane along with carbon monoxide. Furthermore, the morphological properties of the support and catalysts, as well as the effect of the reaction conditions on the catalysts surface, were studied using a variety of techniques, including XRD, TEM, SEM-EDX and TPR. The results showed promising potential for the application of transition metal catalysts on lanthanum oxide support for RWGS that could be extended to other hydrogenation reactions.  相似文献   

19.
NU-1000 and graphene nanosheet (GNs) with different loadings have been used as fillers to prepare mixed matrix membranes (MMMs) with polyethersulfone (PES). The high performance of the MMMs has been successfully fabricated for the evaluation of gas separation at 1 bar and various temperatures (20, 40, 60 °C). The successful fabrication of the MMMs were confirmed by using SEM, FTIR, AFM, and XRD. The crystalline nature of GNs and NU-1000 in the MMMs are evidenced by XRD, which confirms the successful fabrication of the MMMs. In addition, the thermal stability of the MMMs was enhanced with the increase of the GNs. Separation performance of H2 was superior to CO2, N2 and CH4 separation on the MMMs which is a critical for producing energy. The best gas separation results in terms of both permeability and selectivity were obtained with 0.03% GNs and 10% NU-1000. PG3N membrane presented maximum H2/CO2, H2/N2 and H2/CH4 selectivity of 5, 4.2, 3.3 at 20 C, respectively. With an increase in temperature, the permeability increased, while the selectivity of all the MMMs decreased. The MMMs exhibited excellent gas separation capability, which offers unique opportunities for potential large-scale practical applications.  相似文献   

20.
Two types of advanced nano-composite materials have been formed by incorporating as-synthesized wet-state zeolitic imidazolate frameworks-8 (ZIF-8) nano-particles into a polybenzimidazole (PBI) polymer. The loadings of ZIF-8 particles in the two membranes (i.e., 30/70 (w/w) ZIF-8/PBI and 60/40 (w/w) ZIF-8/PBI) are 38.2 vol % and 63.6 vol %, respectively. Due to different ZIF-8 loadings, variations in particle dispersion, membrane morphology and gas separation properties are observed. Gas permeation results suggest that intercalation occurs when the ZIF-8 loading reaches 63.6 vol %. The incorporation of ZIF-8 particles significantly enhances both solubility and diffusion coefficients but the enhancement in diffusion coefficient is much greater. Mixed gas tests for H2/CO2 separation were conducted from 35 to 230 °C, and both membranes exhibit remarkably high H2 permeability and H2/CO2 selectivity. The 30/70 (w/w) ZIF-8/PBI membrane has an H2/CO2 selectivity of 26.3 with an H2 permeability of 470.5 Barrer, while the 60/40 (w/w) ZIF-8/PBI membrane has an H2/CO2 selectivity of 12.3 with an H2 permeability of 2014.8 Barrer. Mixed gas data show that the presence of CO or water vapor impurity in the feed gas stream does not significantly influence the membrane performance at 230 °C. Thus, the newly developed H2-selective membranes may have bright prospects for hydrogen purification and CO2 capture in realistic industrial applications such as syngas processing, integrated gasification combined cycle (IGCC) power plant and hydrogen recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号