首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new integrated combined cooling, heating and power system which includes a solid oxide fuel cell, Stirling engine, steam turbine, linear Fresnel solar field and double effect absorption chiller is introduced and investigated from energy, exergy and thermodynamic viewpoints. In this process, produced electrical power by the fuel cell and steam turbines is 6971.8 kW. Stirling engine uses fuel cell waste heat and produces 656 kW power. In addition, absorption chiller is driven by waste heat of the Stirling engine and generates 2118.8 kW of cooling load. Linear Fresnel solar field produces 961.7 kW of thermal power as a heat exchanger. The results indicate that, electrical, energy and exergy efficiencies and total exergy destruction of the proposed system are 49.7%, 67.5%, 55.6% and 12560 kW, respectively. Finally, sensitivity analysis to investigate effect of the different parameters such as flow rate of inputs, outlet pressure of the components and temperature changes of the solar system on the hybrid system performance is also done.  相似文献   

2.
The cold energy in many liquefied natural gas (LNG) satellite stations is directly carried away by air or seawater. This causes cold energy waste and environmental cold pollution. To solve this problem, a combined power, heating and cooling system (CCHP) driven by LNG is established based on solid oxide fuel cell (SOFC) and humid air turbine (HAT), namely SOFC-HAT-CCHP system, in which, not only can the waste cold energy cool compressor inlet air to decrease power consumption, but supply cold energy for the cold storage and CO2 recovery. Based on FORTRAN and Aspen Plus, the thermodynamic performance calculation models and the simulation work of the new system are carried out, such as the exergy and energy analysis, as well as the effects of the selected important variables. The results indicate that total exergy efficiency and total power efficiency are 64.7% and 54.4%, and the total thermal efficiency is 79.1%. Besides, the capture rate and purity of the CO2 are 98.7% and 98.9% respectively. The novel system is environmental protective, energy-saving and efficient, which may provide a new direction to reasonably utilize the waste cold energy in LNG satellite stations.  相似文献   

3.
As a high-efficiency and eco-friendly way of energy conversion, fuel cell has received much attention in recent years. A novel residential combined cooling, heating and power (CCHP) system, consisting of a biomass gasifier, a proton exchange membrane fuel cell (PEMFC) stack, an absorption chiller and auxiliary equipment, is proposed. Based on the established thermodynamic models, the effects of operating parameters, biomass materials type and moisture content on the system performance are closely investigated. Overall system performance is then compared under four different operating modes. From the viewpoints of energy utilization and CO2 emissions, the CCHP mode has the best performance with corresponding energy efficiency of 57.41% and CO2 emission index of 0.516 ton/MWh. Exergy analysis results suggest that the optimization and transformation on the gasifier and PEMFC stack should be encouraged. Energy and exergy assessments in this research provide pragmatic guidance to the performance improvement of the integrated CCHP systems with PEMFC. This research also achieves a reasonable combination of efficient cogeneration, green hydrogen production and full recovery of low grade waste heat.  相似文献   

4.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Operation mode of combined cooling heating and power (CCHP) system determines its energetic and environmental performances. This paper analyzes the energy flows of CCHP system and separated production (SP) system. The fuel energy consumptions of CCHP system following electrical demand management (EDM) and thermal demand management (TDM) are deduced respectively. Three indicators: primary energy saving, exergy efficiency and CO2 emission reduction, are employed to evaluate the performances of CCHP system for a commercial building in Beijing, China. The feasibility analysis shows that the performance of CCHP system is strictly dependent upon building energy demands. The selection of CCHP operation modes is systemically based on building loads, CCHP system and local SP system. The calculation results conclude that CCHP system in winter under EDM achieves more benefits than in summer. The sensitivity discussion indicates that the coefficient of performance for cooling and the efficiency of electricity generation are the most sensitive variables to the energetic and environmental performances of CCHP system.  相似文献   

6.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

7.
In this article, an extensive thermodynamic performance assessment for the useful products from the solar tower and high-temperature steam electrolyzer assisted multigeneration system is performed, and also its sustainability index is also investigated. The system under study is considered for multi-purposes such as power, heating, cooling, drying productions, and also hydrogen generation and liquefaction. In this combined plant occurs of seven sub-systems; the solar tower, gas turbine cycle, high temperature steam electrolyzer, dryer process, heat pump, and absorption cooling system with single effect. In addition, the energy and exergy performance, irreversibility and sustainability index of multigeneration system are examined according to several factors, such as environment temperature, gas turbine input pressure, solar radiation and pinch point temperature of HRSG. Results of thermodynamic and sustainability assessments show that the total energetic and exergetic efficiency of suggested paper are calculated as 60.14%, 58.37%, respectively. The solar tower sub-system has the highest irreversibility with 18775 kW among the multigeneration system constituents. Solar radiation and pinch point temperature of HRSG are the most critical determinants affecting the system energetic and exergetic performances, and also hydrogen production rate. In addition, it has been concluded that, the sustainability index of multigeneration suggested study has changed between 2.2 and 3.05.  相似文献   

8.
This article is a careful examination of an energy poly-generation unit integrated with an evacuated solar thermal tube collector. A proton exchange membrane (PEM) electrolysis unit is used for hydrogen production, an ejector refrigeration system (ERS) is utilized for cooling demand, and a heater unit is used for heating demand. All sub-systems are validated by considering recent articles. Cooling and heating demand, as well as the net output power are calculated. The modeled poly-generation system's exergy and energy efficiency are maximized by considering the inlet temperature of the heat exchanger and primary pressure of the ejector with the parametric evaluation of the system. The proposed poly-generation set-up can produce cooling load, heating load, and hydrogen with amounts of 5.34 kW, 5.152 kW, and 63 kg/year, respectively. Based on these values, the energy ef?ciency, and exergy ef?ciency are computed to be 64.14%, and 49.62%, respectively. Higher energy and exergy ef?ciencies are obtained by reducing high pressure of the refrigeration cycle or decreasing the temperature outlet of an auxiliary heater. The heat exchanger and thermal energy storage unit have the highest cost rate among all system components with 73,463 $ and 46,357, respectively. Parametric study indicates that the main determinative elements in the total cost rate of the system are the heater, and the solar collector.  相似文献   

9.
An innovative CCHP system based on SOFC/GT/CO2 cycle and the organic Rankine cycle (ORC) with LNG cold energy utilization is proposed to achieve cascade energy utilization and carbon dioxide capture. The mathematical models are developed and the system performance is analyzed using the energy and exergy methods. The results illustrate that the comprehensive energy utilization, the net power generation and the overall exergy efficiencies of the system can reach about 79.48%, 79.81% and 62.29%, respectively, while the power generation efficiency of the SOFC is 50.96% and the CO2 capture rate of the proposed CCHP system is 79.2 kg/h under the given conditions. It shows that the proposed CCHP system can reach a high energy utilization efficiency with near zero emissions. The influence of some key parameters, such as the fuel utilization factor, the air-fuel ratio, the oxygen concentration in the cathode feed and the compression ratio of the SCO2 turbine on the performance of the entire system is studied.  相似文献   

10.
A new combined cooling, heating and power (CCHP) system is proposed. This system is driven by solar energy, which is different from the current CCHP systems with gas turbine or engine as prime movers. This system combines a Rankine cycle and an ejector refrigeration cycle, which could produce cooling output, heating output and power output simultaneously. The effects of hour angle and the slope angle of the aperture plane for the solar collectors on the system performance are examined. Parametric optimization is conducted by means of genetic algorithm (GA) to find the maximum exergy efficiency. It is shown that the optimal slope angle of the aperture plane for the solar collectors is 60° at 10 a.m. on June 12, and the CCHP system can reach its optimal performance with the slope angle of 45° for the aperture plane at midday. It is also shown that the system can reach the maximum exergy efficiency of 60.33% under the conditions of the optimal slope angle and hour angle.  相似文献   

11.
This study aims to present a novel tri-generation plant consisting of a molten carbonate fuel cell (MCFC) unit coupled with a Stirling engine (SE), a heat recovery steam generator (HRSG), and two types of absorption refrigeration cycles (ARCs), i.e., Generator Absorber eXchanger (GAX) and Vapour Absorption Refrigeration (VAR). The proposed system is evaluated from energy, exergy, as well as environmental impact (3E) points of view. To carry out the parametric study, three sub-models are also introduced for the whole system. The sub-model (1) investigates the solo MCFC with the new configuration. In the sub-model (2), the SE and HRSG are added to boost the power generation and overall system efficiency through employing the heat wasted in the sub-model (1). In the last sub-model, for cooling purposes, the surplus heat of MCFC is reutilized using an absorption refrigeration cycle. Besides, to make a comparative study between GAX and VAR systems, the sub-model (3) is classified into two different schemes: (a) with a VAR cycle, and (b) with a GAX cycle. The results reveal that the exergy efficiency and CO2 emissions of the sub-models (1), (2), and (3) are 48.04%, 51.24%, 52.35% (VAR cycle), 52.12% (GAX cycle), 0.388 t/MWh, 0.364 t/MWh, 0.357 t/MWh (VAR cycle), and 0.358 t/MWh (GAX cycle), respectively. Either with GAX or VAR cycle, the proposed system indicates an acceptable standard of functionality in thermodynamic and environmental perspectives.  相似文献   

12.
In this study, a new solar and geothermal based integrated system is developed for multigeneration of electricity, fresh water, hydrogen and cooling. The system also entails a solar integrated ammonia fuel cell subsystem. Furthermore, a reverse osmosis desalination system is used for fresh water production and a proton exchange membrane based hydrogen production system is employed. Moreover, an absorption cooling system is utilized for district cooling via available system waste heat. The system designed is assessed thermodynamically through approaches of energy and exergy analyses. The overall energy efficiency is determined to be 42.3%. Also, the overall exergy efficiency is assessed, and it is found to be 21.3%. The exergy destruction rates in system components are also analysed and the absorption cooling system generator as well as geothermal flash chamber are found to have comparatively higher exergy destruction rates of 2370.2 kW and 643.3 kW, respectively. In addition, the effects of varying system parameters on the system performance are studied through a parametric analyses of the overall system and associated subsystems.  相似文献   

13.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

14.
A scale of 2.4 MW molten carbonate fuel cell (MCFC) was taken to construct a high-efficiency and economic power generation system without CO2 emission for utilizing its exhaust gas. A conventional steam turbine power generation system (STPS) is evaluated and the net generated power (NGP) is estimated to be only 131 kW and the STPS is not economically feasible. A CO2-caputuring repowering system is proposed, where low temperature steam produced at heat recovery steam generator (HRSG) by using the MCFC exhaust gas is utilized as a main working fluid of a gas turbine, and the temperature of the steam is raised by combusting fuel in a combustor by using pure oxygen, not the air. It is estimated that NGP of the proposed system is 253 kW, and CO2 reduction amount is 583 t-CO2/y, compared to 302 t-CO2/y for the STPS and that the proposed system becomes economically feasible if a CO2 emission credit higher than 20 $/t-CO2 can be granted. It is also estimated, when its turbine inlet temperature is increased from 850 °C to 1000 °C, CO2-capturing is not cost-consuming but becomes to be profitable, owing to improved power generation characteristics.  相似文献   

15.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

16.
In the current research, 4E analysis and multi-criteria optimization are applied to the poly generation unit for power, heating, refrigeration, and freshwater generation. This system consists of a solid oxide fuel cell (SOFC), multi-effect thermal vapor desalination (MED-TVC), an organic system with ejector refrigeration (OSER), a heat recovery steam generator (HRSG) and a domestic hot water generator. The mathematical simulation is applied to assess the performance of the plant at design conditions and the genetic algorithm finds the optimum operating point with two different scenarios. Parametric analysis and multi-objective optimization are carried out. Findings represent that the developed plant can provide 257.65 kW power, 12.13 kW, 7.44 kW cooling and heating load, and 0.04 kg/s freshwater with a total cost rate of 10.62 $/h. In this case, the plant energy and exergy efficiency is 73.9% and 71.35% respectively. The results of multi-objective optimization show that these values can be improved to 79% and 73.9% respectively. In addition, the plant cost can be reached to 10.07 $/h in this condition.  相似文献   

17.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

18.
In this present research study a multi-generation energy system which is coupled with CO2 capture unit which is based on Rankine cycle, organic Rankine cycle, ejector cooling system and absorption chiller has been analyzed via energy, exergy, exergy-economic aspects by developing MATLAB, also to achieve the optimum operating condition genetic algorithm has been applied for system optimization. The objective of this study is to propose an optimized efficient integrated energy system to recycle the energy waste of a typical industrial factory. The optimization has been illustrated on a Pareto frontier to achieve the optimum scheme of the multi-generation system regarding technical and economic viewpoints. Results indicate the optimal condition of this system has occurred at 0.37 exergy efficiency with 0.03 $/s. Furthermore, by surging the mass flow rate of waste gases up to 70 kg/s, net power output augmented up to 7500 kW. Besides, hydrogen production and produced desalinated water rise up to 8.5 g/s and 16 kg/s, respectively.  相似文献   

19.
In the present study, a new solar-based energy system for a self-sustained community is presented and analysed via the principles of thermodynamics. The presented system can meet the electricity demand, cooling load, and hydrogen (for the refueling of the vehicles) in a community by using a solar heliostat system (based on molten salt) in remote areas. Steam Rankine cycle is used to feed the electricity demand while some of the steam is bled out to operate the two-stage ammonia water-based absorption system for the cooling application. The result of the present study shows that with a heliostat area of 6000 m2, 372 kW of electricity, 610 kW of cooling capacity, and 7.2 kg/h of hydrogen is generated. Furthermore, exergy analysis results reveal that the maximum exergy destruction takes place in the central receiver (1170 kW) followed by heliostat (980 kW). The performance assessment of the overall presented system is made via exergy and energy efficiencies and estimated as 17.7%, and 38.9% respectively. Effects of some crucial parameters such as direct normal irradiance, evaporator temperature, the bleeding ratio, etc. have been studied on the overall system performance.  相似文献   

20.
Aiming at the power fluctuation and mismatch of the combined cooling, heating, and power (CCHP) system based on proton exchange membrane fuel cells (PEMFCs) and adsorption chiller, this study proposes a multi-stack coupled power supply strategy. The PEMFC stacks are divided into types Ⅰ, Ⅱ, and Ⅲ to meet the electric load and cooling load of the data center, and the heat requirements of the system. Meanwhile, economic analysis is conducted on the single-stack energy supply strategy and the multi-stack coupled energy supply strategy. The results show that with the multi-stack coupling power supply strategy, the cooling power and electric power almost completely match the load of the data center, without power fluctuations and overshoot. By smoothing the PID control results of the current of the stacks-Ⅲ, the heating power fluctuation is significantly reduced, and the maximum overshoot does not exceed 0.5 kW. Therefore, the strategy is conducive to the stable operation of the PEMFC stack and improves the lifetime of the system. Considering investment costs, maintenance costs, hydrogen costs, and electricity benefits, the multi-stack coupled energy supply strategy can save about 6.1 × 105 $ per year. In summary, the multi-stack coupled energy supply strategy has advantages in system lifetime, operational stability, and economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号