共查询到20条相似文献,搜索用时 15 毫秒
1.
Rui Lin Chunhui Cao Jianxin Ma Erich Gülzow K. Andreas Friedrich 《International Journal of Hydrogen Energy》2012
The segmented fuel cell technology was applied to investigate the effects of the humidification conditions on the internal locally resolved performance and the stability of the fuel cell system. It was found at certain operating conditions, the time-dependent oscillation of current at potentio-static state appeared. The appearance of positive spikes of current indicated a temporary improved performance, while the negative current spikes indicated a temporary decreased performance. The periodic build-up and removal of liquid water in the cell caused unstable cell performance. Through the analyses of the evolution of the locally resolved current density distributions, the reasons for the positive or the negative spikes of current peaks with respect to a stationary value were found, which might be due to the drying-out of the membrane or the flooding of the membrane. The contour of the current density mapping differed to each other at the period of current peaks up or down, which might be due to different effect of the drying-out or flooding on the membrane. Through optimizing the relative humidity of anode (RHa) or cathode (RHc) of the fuel cell, the oscillation of the current disappeared and the performance of the cell became stable. RHc affects the performance of fuel cell much more obviously than RHa. The stability of the fuel cell system is also dependent on the imposed voltage. With the cell voltage decreased, the amplitude and the frequency of positive spikes of current increased. 相似文献
2.
In a proton exchange membrane fuel cell (PEMFC), flow field design is an important factor that influences the distributions of current density and water accumulation. The segmented model developed in prior study is used to investigate the effect of flow field patterns on current density distribution. This model predicts the distributed characteristics of water content in the membrane, relative humidity in the flow channels, and water accumulation in the gas diffusion layers (GDLs).Three single cells with different flow field patterns are designed and fabricated. These three flow field designs are simulated using the segmented model and the predicted results are compared and validated by experimental data. This segmented model can be used to predict the effect of flow field patterns on water and current distributions before they are machined. 相似文献
3.
Phuong-Long Le Bhupendra Singh Yong-Song Chen Amornchai Arpornwichanop 《International Journal of Hydrogen Energy》2021,46(52):26507-26517
To develop an operating strategy for maximizing the energy efficiency of open-cathode proton exchange membrane fuel cells (OCPEMFCs), the present study investigates the effect of the fan speed on the stack performance and energy efficiency using a commercially available OCPEMFC system. The temperature, voltage, and current of the stack are monitored, and the energy efficiency is calculated at various stack power levels. The results of the system with a lab-developed controller are compared with the commercial system with a built-in controller. It is found that the fan speed should be minimum to reduce the auxiliary power consumption and that the stack should be efficiently heated to enhance the electrochemical reaction. In addition, it is noticed that the stack performance dramatically drops when the stack temperature is above 75 °C, due to the membrane dehydration. Overall, the results show that the stack temperature is an important indicator for controlling the fan speed for optimization of energy efficiency, and for stack powers of 50, 60, 70, and 80 W, the peak values of energy efficiencies are 38.0%, 38.3%, 38.5%, and 38.3% at the duty cycles of 0.2, 0.2, 0.25, and 0.3, respectively, which are 28–38% higher than the commercially available OCPEMFC system. 相似文献
4.
Wei-Mon YanHsin-Sen Chu You-Lun LiuFalin Chen Jer-Huan Jang 《International Journal of Hydrogen Energy》2011,36(9):5435-5441
This paper investigates the effects of cathode gases containing chloride ions on the proton exchange membrane fuel cell (PEMFC) performance. Chloride solutions are vaporized using an ultrasonic oscillator and mixed with oxygen/air. The salt concentration of the mixed gas in the cathode is set by varying the concentration of the chloride solution. Five-hour tests show that an increase in the concentration of sodium chloride did not significantly affect the cell performance of the PEMFC. It is found that variations in the concentration of chloride do not show significant influence on the cell performance at low current density operating condition. However, for high current density operating conditions and high calcium chloride concentrations, the chloride ion appears to have a considerable effect on cell performance. Experimental results of 108-h tests indicate that the fuel cell operating with air containing calcium chloride has a performance decay rate of 3.446 mV h−1 under the operating condition of current density at 1 A/cm2. From the measurements of the I-V polarization curves, it appears that the presence of calcium chloride in the cathode fuel gas affects the cell performance more than sodium chloride does. 相似文献
5.
Cold start from subzero temperature is one of the key barriers, which prevents proton exchange membrane fuel cell (PEMFC) from further commercialization. In this paper, we have applied the printed circuit board (PCB) technology to study the current density distributions of PEMFC and optimized the technology under rapid cold start. The results show that increasing the initial load, and the setup temperature can help to lower the cold start time and achieve rapid warm-up of PEMFC. The cell can be rapidly cold started for 10 s at −5 °C and 55 s at −10 °C under 0.2 V operation condition, but it failed at −15 °C and −20 °C. The inlet region and middle region produce half of the total current before the overall peak current density is reached, which is important for the successful cold start. Based on these characteristics, we optimized the rapid cold start strategy by co-operation of hot reactant gas and waste heat generation of PEMFC. It becomes possible to start up the PEMFC at temperatures down to −20 °C with about 20 min. 相似文献
6.
Zyun Siroma Naoko FujiwaraTsutomu Ioroi Shin-ichi YamazakiHiroshi Senoh Kazuaki YasudaKazumi Tanimoto 《Journal of power sources》2007
To measure local phenomena in a PEMFC during a transitional state induced by changing of the feeding gas, a segmented cell was fabricated and the local current and local potential distribution were measured under open-circuit conditions. The anode or cathode was divided into 97 segments of 1.5 mm each. A change in the anode gas from nitrogen or oxygen to hydrogen induced momentary internal currents among the segments. The potential distribution in the electrolyte was observed simultaneously using three quasi-reference electrodes located locally. The results supported the reverse-current decay mechanism, which is known to be a mechanism of cathode degradation. Furthermore, internal currents were observed when the cathode gas was changed from nitrogen to oxygen. While the cathode was not subjected to a harmful potential, a large potential distribution was induced in the anode. 相似文献
7.
In this paper, a new approach to estimate the optimal performance of an unknown proton exchange membrane fuel cell (PEMFC) has been proposed. This proposed approach combines the Taguchi method and the numerical PEMFC model. Simulation results obtained using the Taguchi method help to determine the value of control factors that represent the tested unknown PEMFC. The objective of reducing both fuel consumption and operation cost can be achieved by determining the parameters for the unknown PEMFC. In addition, the optimal operation power for the tested unknown PEMFC can also be predicted. Experimental results on the test equipment show that the proposed approach is effective in optimal performance estimation for the tested unknown PEMFC, thus demonstrating the success achieved by combining the Taguchi method and the numerical PEMFC model. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(39):17393-17406
In this study, a numerical analysis was conducted to investigate the effects of current collector plate geometry on performance in a cylindrical PEM (Proton Exchange Membrane) fuel cell. For this purpose, 2 anode and cathode current collector plate geometries for each helix channel and straight channel were designed. Current collector plates with different geometries were combined with different sequences, and four different main model fuel cell geometries were created. Accordingly, anode and cathode current collector plates for Model-1, Model-2, Model-3, and Model-4 geometries were determined as straight-straight, helix-helix, straight-helix, and helix-straight, respectively. Using these model geometries, simulations were conducted for three different operating pressures, four different operating flow rates, and ten different operating voltages. It was observed that when helix flow channels were used instead of straight flow channels in current collection plate geometries, the flow density increased by approximately 63.18%. The results also revealed that the current density increased by approximately 206.9% when the fuel cell operating pressure increased. In addition, the power density increased as the operating pressure increased. As the gas flow to anode and cathode increased, a 19.05% increase in the current increase in the pressure difference was observed. As a result, the helix flow channel usage performed better than the straight flow channel for the parameters adopted in this study. 相似文献
9.
《International Journal of Hydrogen Energy》2023,48(27):10118-10143
Proper water management in gas flow channels of a proton exchange membrane fuel cell (PEMFC) necessitates a comprehensive understanding of liquid water generation and motion, which are strongly related to droplet dynamics and flow patterns. Based on existing literature on numerical simulations using Volume of Fluid (VOF) method and Lattice Boltzmann method (LBM), this review identifies and analyzes the main factors in detail that affect the droplet dynamics including surface wettability, initial states of liquid water, geometrical structures of channels, and operating conditions. In addition, visualization experiments can effectively compensate for numerical simulations restricted by the limitations of length and time scale. This review focuses on optical photography, which is currently considered as the most convenient and low-cost method and discusses experimental apparatuses, qualitative flow pattern maps, and quantitative information. Finally, strategies for liquid water removal from gas flow channels are extracted to further enhance the performance of low-temperature PEMFCs. 相似文献
10.
Water and heat management are the most critical issues for the performance of proton exchange membrane (PEM) fuel cells. They can be provided by keeping hydrogen flow rate, oxygen flow rate, cell temperature and humidification temperature under control. In this study, the effects of these parameters on the power density of proton exchange membrane (PEM) fuel cell which has 25 cm2 active area have been examined experimentally using hydrogen on the anode side and oxygen on the cathode side. Response Surface Methodology (RSM) has been applied to optimize these operation parameters of proton exchange membrane (PEM) fuel cell. The test responses are the maximum output power density. ANOVA (analysis of variance) analyses are used to compute the effects and the contributions of the various factors to the fuel cell maximal power density. The use of this design shows also how it is possible to reduce the number of experiments. Hydrogen flow rate, oxygen flow rate, humidification temperature and cell temperature were the main parameters to have been varied between 2.5–5 L/min, 3–5 L/min, 40–70 °C and 40–80 °C in the analyses. The maximum power density was found as 241.977 mW/cm2. 相似文献
11.
A serpentine flow field with outlet channels having modified heights or lengths was designed to improve reactant utilization and liquid water removal in proton exchange membrane (PEM) fuel cells. A three-dimensional full-cell model was developed to analyze the effects of the contraction ratios of height and length on the cell performance. Liquid water formation, that influences the transport phenomena and cell performance, was included in the model. The predictions show that the reductions of the outlet channel flow areas increase the reactant velocities in these regions, which enhance reactant transport, reactant utilization and liquid water removal; therefore, the cell performance is improved compared with the conventional serpentine flow field. The predictions also show that the cell performance is improved by increments in the length of the reduced flow area, besides greater decrements in the outlet flow area. If the power losses due to pressure drops are not considered, the cell performance with the contracted outlet channel flow areas continues to improve as the outlet flow areas are reduced and the lengths of the reduced flow areas are increased. When the pressure losses are also taken into account, the optimal performance is obtained at a height contraction ratio of 0.4 and a length contraction ratio of 0.4 in the present design. 相似文献
12.
A simple and fast empirical design model for a 5 kW proton exchange membrane (PEM) stack is presented in this paper. The performance analysis of the PEM stack operating on a membrane humidifying method is made through a series of experiments, including current–voltage–power characteristics, uniformity of cell unit voltages, gas pressure impact and air flux impact. Based on the above analysis, an empirical predicted model for the PEM stack has been developed by the combination of mechanistic and empirical modeling approaches to characterize and predict the voltage–current characteristics without examining in depth all physical/chemical phenomena. The good agreement between the predicted and experimental results covering a range of optimal operating conditions shows that the proposed model provides an accurate representation of the behavior for the PEM stack. 相似文献
13.
Yi Yu Xiao-Zi Yuan Hui Li Elton Gu Haijiang Wang Guangjin Wang Mu Pan 《International Journal of Hydrogen Energy》2012
Current distribution during the gas starvation and shutdown processes is investigated in a proton exchange membrane fuel cell with an active area of 184 cm2. The cell features a segmented cathode current collector. The response characteristics of the segmented single cell under different degrees of hydrogen and air starvation are explored. The current responses of the segment cells at different positions under a dummy load in the shutdown process are reported for various operating conditions, such as different dummy loads, cell temperatures, and gas humidities under no back pressure. The results show that applying a dummy load during the cell shutdown process can quickly reduce the cell potential and thereby avoid the performance degradation caused by high potentials. The currents of all the segment cells decrease with time, but the rate of decrease varies with the segment cell positions. The rate for the segment cells near the gas outlet is much higher than that of the segment cells near the gas inlet. The current of the segment cells decreases much more quickly at a lower gas humidity and high temperature. This study provides insights in the development of mitigation strategies for the degradation caused by starvation and shutdown process. 相似文献
14.
质子交换膜燃料电池在运行过程中反应物从流道传输至催化层时会经过气体扩散层,气体扩散层即可用来传输反应气体,又用来排出反应物生成的水,所以探究气体扩散层的结构对参加反应的物质及生成物传输的影响规律有助于了解其分布情况。通过数值模拟比较了穿孔型、树状型和不规则形状气体扩散层在不同孔隙率下顺流流动时对电池性能的影响情况。计算结果表明,气体扩散层结构严重影响质子交换膜燃料电池性能,三种不同形状的气体扩散层对应的电性能随孔隙率的变化规律各不相同,到达催化层表面氧气的含量受扩散层结构影响比氢气大,气体扩散层结构对阴极侧生成物水含量的影响不可忽略。 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(49):27046-27055
An indirect fuel cell system is constructed. The system is composed of a redox flow battery (RFB) to extract electrical energy and two chemical reactors (anolyte and catholyte regenerators). A quinone as a redox mediator is reduced by a mixture of hydrogen and carbon monoxide in the anolyte regenerator, whereas a polyoxometalate as another redox mediator is oxidized in the catholyte regenerator, followed by a steady-state power generation at the RFB using the two redox mediators as active materials. This system demonstrates how to reduce the amount of platinum required in a proton-exchange membrane fuel cell (PEMFC), especially when using a fuel other than pure hydrogen. The RFB in our system contains two gas-diffusion electrodes (GDEs) with a platinum electrocatalyst to insert a “pure hydrogen gas phase” between the anolyte and catholyte to avoid cross-contamination. These two GDEs participate in the hydrogen evolution reaction and hydrogen oxidation reaction, respectively, and require only a small amount of platinum. In addition, the catalysts used in the anolyte regenerator are rhodium complexes. However, these catalysts are in a dissolved state (molecular catalysts) with micromolar-order concentrations, and very little noble metal is used. A carbonaceous catalyst without platinum is used in the catholyte regenerator. This eliminates the need for a noble metal for the oxygen reduction reaction, which is the main reason why platinum is used in a large amount in a conventional PEMFC. Steady-state operations of the anode side, the cathode side, and the total system are demonstrated in this work. Although a small amount of noble metal is still required at this stage, this work may contribute to the complete elimination of noble metals from a PEMFC. 相似文献
16.
Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation 总被引:2,自引:0,他引:2
Dong Liang Qiang Shen Ming Hou Zhigang Shao Baolian Yi 《Journal of power sources》2009,194(2):847-853
In this research, the fuel starvation phenomena in a single proton exchange membrane fuel cell (PEMFC) are investigated experimentally. The response characteristics of a single cell under the different degrees of fuel starvation are explored. The key parameters (cell voltage, current distribution, cathode and anode potentials, and local interfacial potentials between anode and membrane, etc.) are measured in situ with a specially constructed segmented fuel cell. Experimental results show that during the cell reversal process due to the fuel starvation, the current distribution is extremely uneven, the local high interfacial potential is suffered near the anode outlet, hydrogen and water are oxidized simultaneously in the different regions at the anode, and the carbon corrosion is proved to occur at the anode by analyzing the anode exhaust gas. When the fuel starvation becomes severer, the water electrolysis current gets larger, the local interfacial potential turns higher, and the carbon corrosion near the anode outlet gets more significant. The local interfacial potential near the anode outlet increases from ca. 1.8 to 2.6 V when the hydrogen stoichiometry decreases from 0.91 to 0.55. The producing rate of the carbon dioxide also increases from 18 to 20 ml min−1. 相似文献
17.
The study applies a three-dimensional model simulating the transport phenomenon and electrochemical reactions of full scale serpentine channels to determine the best arrangement of cuboid rows at the axis in the anode and cathode channels. With the best arrangement of the cuboid rows in the channels, the Taguchi methodology is used in the experiment to obtain the optimal operating parameters for three objectives with the minimum pressure drops in anode and cathode channels, and maximum electrical power. The results show that the interactions of flow fields between each cuboid and the current collector surface generate less overall deflection effect and force more reactant gases into the catalyst layer to have more uniform current density distributions. The electrical power is 30% greater for the three objectives optimization than for minimum pressure drops optimization and the pressure drops 275% less for the three objectives optimization than for maximum electrical power optimization. 相似文献
18.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. 相似文献
19.
《International Journal of Hydrogen Energy》2022,47(75):32273-32286
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells. 相似文献
20.
Cathodic catalyst layers for proton exchange membrane fuel cells (PEMFCs) are prepared according to a spraying technique, and the optimal composition of the catalyst layer is investigated by applying a mixture design approach, where the power density of the PEMFC is used as the response of the model. Based on the conventional experimental design, the optimal Nafion content of the electrocatalytic layers of a PEMFC is 35%, and a maximum power density (Pmax) of 239.5 mW cm−2 is attained. Polytetrafluoroethylene (PTFE) is added to the cathodic catalyst layer to manage water, and the relationship between the Pmax of the PEMFC (y) and the cathodic pseudo-compositions (Y1 (Pt/C), Y2 (Nafion) and Y3 (PTFE)) is obtained:
y=204.40Y1+198.60Y2+188.44Y3+167.46Y1Y2 (R2=0.9908) 相似文献