共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(11):7016-7048
Hydrogen is an energy carrier that will certainly make an important and decisive contribution to the global energy transition and lead to a significant reduction in greenhouse gas (GHG) emissions over the coming decades. It is estimated that 60% of GHG emission reductions in the last phase of the energy transition could come from renewables, green hydrogen and electrification based on green energy development. Coordinated efforts by governments, industry and investors, as well as substantial investment in the energy sector, will be required to develop the hydrogen value chain on a global scale. This paper summarizes the technical and technological advances involved in the production, purification, compression, transportation and use of hydrogen. We also describe the roadmaps and strategies that have been developed in recent years in different countries for large-scale hydrogen production. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(13):8565-8584
With the aim to reduce emissions from marine transport, electric propulsion systems for a water taxi and container ship powered by a hydrogen polymer electrolyte membrane fuel cell system are designed and analyzed compared to the current fuel-oil engine systems in terms of system energy and exergy efficiency, fuel consumption, mass and volume, environmental impacts and cost. Hydrogen is stored either as a compressed gas (GH2), cryogenic liquid (LH2) or produced from liquid ammonia (LNH3) and can deliver 91%,91% and 88% greenhouse gas reductions, respectively. All hydrogen sources fit within ship volume and mass constraints apart from GH2 in the cargo ship. In the absence of carbon policy measures, the costs over a 25-year system life are 108% (GH2), 112% (LH2), 116% (LNH3) greater for the container ship and 43% (GH2), 105% (LNH3) greater for the water taxi. A carbon tax of £75-191/tonne CO2eq would allow the low carbon options to become cost competitive. 相似文献
3.
Odorants have been proposed as a reliable, inexpensive means to enable leak detection for hydrogen systems and increase public safety. However, traditional odorants cause problems for fuel cell systems. This paper examines the use of odorants for fuel cell systems, including the hydrogen storage. Current odorants and potential odorants have negative impacts on fuel cell performance. Odorants also appear to be problematic for most of the advanced hydrogen storage options. If odorants are used, the odorants will probably need to be removed from the hydrogen prior to the storage medium. Current hydrogen detectors are more reliable than the odorant–human detection system and should provide increased safety. 相似文献
4.
D. Chabane F. Harel A. Djerdir M. Ibrahim D. Candusso O. Elkedim N. Fenineche 《International Journal of Hydrogen Energy》2017,42(2):1412-1419
The optimal design of hydride tanks is a major technological issue for the rapid development of this technology. In this paper, a two-dimensional model of a closed metal–hydrogen reactor is presented. The temperature and the pressure temporal evolutions within the reactor as a function of time are reported. In order to determine the parameters to optimize a fast kinetic and optimal heat exchange, the impact of the supply pressure, the porosity and the dynamic viscosity have been studied. The results show that the effect of these parameters are key-factors for an optimized tank design. 相似文献
5.
Rebecca L. KingGerardine G. Botte 《Journal of power sources》2011,196(5):2773-2778
A technology was demonstrated for the production of hydrogen and other valuable products (nitrogen and clean water) through the electrochemical oxidation of urea in alkaline media. In addition, this process remediates toxic nitrates and prevents gaseous ammonia emissions. Improvements to urea electrolysis were made through replacement of aqueous KOH electrolyte with a poly(acrylic acid) gel electrolyte. A small volume of poly(acrylic acid) gel electrolyte was used to accomplish the electrochemical oxidation of urea improving on the previous requirement for large amounts of aqueous potassium hydroxide. The effect of gel composition was investigated by varying polymer content and KOH concentrations within the polymer matrix in order to determine which is the most advantageous for the electrochemical oxidation of urea and production of hydrogen. 相似文献
6.
7.
Bryan K. Boggs 《Journal of power sources》2009,192(2):573-581
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption. 相似文献
8.
《International Journal of Hydrogen Energy》2019,44(42):23699-23707
Hydrogen as compressed gas is a promising option for zero-emission fuel cell vehicle. The fast and efficient refueling of high pressure hydrogen can provide a convenient platform for fuel cell vehicles to compete with conventional gasoline vehicles. This paper reports the finding of adiabatic simulation of the refueling process for Type IV tank at nominal working pressure of 70 MPa with considering the station refueling conditions. The overall heat transfer involved in refueling process was investigated by heat capacity model based on MC method defined by SAE J2601. The simulation results are validated against experimental data of European Commission's Gas Tank Testing Facility at Joint Research Centre (GasTef JRC), Netherlands. The results confirmed that end temperature and state of charge significantly depends on refueling parameters mainly supply hydrogen temperature and filling rate. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(14):7958-7967
The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as a ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles. Here, we present new engineering solutions of a MH hydrogen storage tank for fuel cell utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge/discharge. The tank is an assembly of several MH cassettes each comprising several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. The assembly of the MH containers staggered together with heating/cooling tubes in the cassette is encased in molten lead followed by the solidification of the latter. The tank can provide >2 h long H2 supply to the fuel cell stack operated at 11 kWe (H2 flow rate of 120 NL/min). The refuelling time of the MH tank (T = 15–20 °C, P(H2) = 100–150 bar) is about 15–20 min. 相似文献
10.
Mehmet Gurz Ertugrul Baltacioglu Yakup Hames Kemal Kaya 《International Journal of Hydrogen Energy》2017,42(36):23334-23346
In this study, an overview has been presented a classification of the vehicles using hydrogen with different ways. The using of hydrogen in vehicles has been categorized into two main categories as designs in which hydrogen is burned and energy is generated by conversion to electricity. The designs of internal combustion vehicles with using hydrogen via burning, the designs of the fuel cell vehicles that using hydrogen by converting into electricity and their hybrid versions have been introduced. In the automotive industry, the structure and future advantages of hydrogen fuel cell electric vehicles have been handled in a separate title. Onboard storage, safety, the capital cost and operating cost of the different design of vehicles have been analyzed rigorously. 相似文献
11.
《International Journal of Hydrogen Energy》2021,46(72):35896-35909
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY), is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells, together with the systems for their refuelling at industrial customers facilities. For these applications, high specific weight of the metallic hydrides has an added value, as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level, simplification of the design and reducing the system cost, together with improvement of the efficiency of system “MH store-FC”, is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway, Germany, Croatia), and two partner countries (South Africa and Indonesia).The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression, (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced, (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019). 相似文献
12.
In the last decade, production of biogas from biomass degradation has attracted the attention of several research groups. The interest on this hydrogen source is focused on the potential use of this gas as raw material to supply high temperature fuel cells (HTFC). This paper reports a wide research investigation carried out at CNR-ITAE on biogas reforming processes (steam reforming, autothermal reforming and partial oxidation). A mathematical model was developed, in Aspen Plus, and an experimental validation was made in order to confirm model results. Simulations were performed to determine the reformed gas composition and the system energy balance as a function of process temperature and pressure. The value of Gas Hour Space Velocity (GHSV) was selected for calculating compositions at full equilibrium, as it is expected in operative large scale plant. To obtain a realistic evaluation of the reforming processes efficiency, the energy balance for each examined process was developed as available energy of outlet syngas on inlet required energy ratio. The comparison between values of efficiency process gives useful indication about their reliability to be integrate with fuel cell systems. 相似文献
13.
Wind energy and the hydrogen economy—review of the technology 总被引:2,自引:0,他引:2
The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness. 相似文献
14.
The catalytic hydrolysis of alkaline sodium borohydride (NaBH4) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH4 concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. 相似文献
15.
Prior investigations have proposed, and successfully implemented, a stand-alone supply of aqueous hydrogen peroxide for use in fuel cells. An apparent obstacle for considering the use of aqueous hydrogen peroxide as an energy storage compound is the corrosive nature of the nominally required 50 wt.% maximum concentration. Here we propose storage of concentrated hydrogen peroxide in a high weight percent solid slurry, namely the equilibrium system of CaO2·2H2O2(s)/H2O2(aq), that mitigates much of the risk associated with the storage of such high concentrations. We have prepared and studied surrogate slurries of calcium hydroxide/water that are assumed to resemble the peroxo compound slurries. These slurries have the consistency of a paste rather than a distinct two-phase (liquid plus solid) system. This paste-like property of the prepared surrogates enable them to be contained within a 200 lines-per-inch. (LPI) nickel mesh screen (33.6% open area) with no solids leakage, and only liquid transport driven by an adsorbent material is placed in physical contact on the exterior of the screen. This hydrogen peroxide slurry approach suggests a convenient and safe mechanism of storing hydrogen peroxide for use in, say, vehicle applications. This is because fuel cell design requires only aqueous hydrogen peroxide use, that can be achieved using the separation approach utilizing the screen material here. This proposed method of storage should mitigate hazards associated with unintentional spills and leakage issues arising from aqueous solution use. 相似文献
16.
M.R. Hajmohammadi P. Aghajannezhad S.S. Abolhassani M. Parsaee 《International Journal of Hydrogen Energy》2017,42(31):19683-19694
Due to the production of hydrogen, using fuel cells for energy conversion and storing encounters safety problems. Combining high-temperature solid oxide fuel cells with photovoltaic solar panels or zinc oxide solar panels can be a good candidate to produce/convert and store the energy more efficiently for using at peak times. The current paper intends to analyze the efficiency of integration of zinc oxide solar panels and fuel cells to produce hydrogen directly. Therefore, the excess step of converting electricity to hydrogen and re-converting it to electricity, which is customarily used for the integration of the photovoltaic and solid oxide fuel cells, could be skipped. The new method paves the way for providing the required energy for heating/cooling through the floor heating and ceiling cooling systems as well as generating electricity. The article also demonstrates that it is possible to have heat during the day and night for an area of 1920 m2 and 542 m2. It is also possible to create coolness during the day and night for an area of 925 m2 and 260 m2. 相似文献
17.
David Wenger Wolfgang Polifke Eberhard Schmidt-Ihn Tarek Abdel-Baset Steffen Maus 《International Journal of Hydrogen Energy》2009
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials. 相似文献
18.
Terry A. Johnson Michael P. Kanouff Daniel E. Dedrick Gregory H. Evans Scott W. Jorgensen 《International Journal of Hydrogen Energy》2012
Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. 相似文献
19.
T. Førde J. Eriksen A.G. Pettersen P.J.S. Vie Ø. Ulleberg 《International Journal of Hydrogen Energy》2009
A metal hydride (MH) storage unit and a polymer electrolyte membrane (PEM) fuel cell (FC) stack were thermally integrated through a common water circulation loop. The low temperature waste heat dissipated from the fuel cell stack was used to enhance and ensure the release of hydrogen from the storage unit. A water-heated MH-tank can be made more compact than an air-heated MH-tank with external heating fins, due to more direct heat transfer between MH-alloy and heating/cooling media. A water-heated MH-tank will therefore have the potential for better kinetics for absorption and desorption of hydrogen. 相似文献
20.
E.MacA. Gray C.J. WebbJ. Andrews B. ShabaniP.J. Tsai S.L.I. Chan 《International Journal of Hydrogen Energy》2011,36(1):654-663
The use of intermittent renewable energy sources for power supply to off-grid electricity consumers depends on energy storage technology to guarantee continuous supply. Potential applications of storage-guaranteed systems range from small installations for remote telecoms, water-pumping and single dwellings, to farms and whole communities for whom grid connection is too expensive or otherwise infeasible, to industrial, military and humanitarian uses. In this paper we explore some of the technical issues surrounding the use of hydrogen storage, in conjunction with a PEM electrolyser and PEM fuel cell, to guarantee electricity supply when the energy source is intermittent, most typically solar photovoltaic. We advocate metal-hydride storage and compare its energy density to that of Li-ion battery storage, concluding that a significantly smaller package is possible with metal-hydride storage. A simple approach to match the output of a photovoltaic array to an electrolyser is presented. The properties required for the metal-hydride storage material to interface the electrolyser to the fuel cell are discussed in detail. It is concluded that relatively conventional Mischmetal-based AB5 alloys are suitable for this application. 相似文献