首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   

2.
In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel.  相似文献   

3.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

4.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

5.
在一台4缸直喷式柴油机上研究了超低硫柴油、生物柴油及后者与甲醇的混合燃料对发动机性能、气体及微粒排放的影响。生物柴油由餐饮废油制取,除单独使用外和甲醇按体积比90:10和80:20混合后使用。在最大扭矩转速1800 r.m in-1时,在5个不同负荷下,比较了不同燃料热效率及CO、HC、NOx以及微粒质量浓度,微粒的总数量及平均几何粒径。结果表明,和超低硫柴油相比,生物柴油及其和甲醇的混合燃料的热效率增加,NOx和微粒质量、数量浓度的排放降低,但HC、CO和NO2排放升高;同时,随着甲醇混合比例的增加,HC、CO和NO2的排放成比例增加,微粒的质量浓度及数量浓度进一步降低,热效率及NOx几乎保持不变。  相似文献   

6.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

7.
This paper analyzes the emissions of a single‐cylinder diesel engine fueled with biodiesel, using selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) techniques. The aim of this paper is to compare both EGR and SCR techniques, which were studied under different brake powers. Grape seed biodiesel was used as a test fuel. Experiments were performed by both techniques at different loads and rates to find out the performance change in the engine and the change in the emission rates using both the techniques. Then the observations from both the techniques were compared, concluding that both the techniques show a sufficient reduction in NOx. Using the abovementioned techniques, a reduction in hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and smoke was observed. The EGR technique is more suitable for low‐load engine vehicles, as it affects the efficiency of the engine with an increase in the fuel consumption, whereas the SCR technique is suitable for high‐load engines, which do not affect the efficiency of the engine with a decrease in the fuel consumption.  相似文献   

8.
代用燃料在柴油机中的应用研究   总被引:1,自引:0,他引:1  
本文对植物油,生物柴油,乳化油,乙醇/柴油等的制备和理化特性进行了研究.通过柴油机台架试验,研究了柴油机燃用生物柴油、乙醇/柴油、微乳燃油的排放特性.对比试验表明:生物柴油CO,碳氢(HC)和颗粒物(PM)的比排放下降幅度分别为34.6%,40.2%和28.9%,但NOx比排放增加了6.63%;柴油机燃用乙醇/柴油时,...  相似文献   

9.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

10.
Straight vegetable oil (SVO) has been considered as a possible alternative to fossil diesel-engine fuel since the development of diesel engines. In Europe, SVOs achieved a measurable share in biofuels market reaching 4%. This study attempts to identify the impact of untreated SVO application on fuel consumption and emissions, regulated and non-regulated, on a Euro 3 common rail diesel passenger car. Three different vegetable oils (cottonseed, sunflower, and rapeseed) were blended with diesel fuel, on a 10-90% v/v ratio each. Chassis dynamometer measurements were conducted including both regulated and non-regulated pollutants. In the case of rapeseed oil-diesel blend, carbonyl compounds (10 aldehydes and ketones) were investigated. In addition to the legislated procedure (NEDC), the Artemis driving cycles were used for quantifying the fuels’ impact over realistic driving conditions. Results indicate that all blends have limited effects on gaseous pollutants and vehicle performance. Statistically significant increases on CO2, CO and HC were recorded over NEDC in the order of 3, 39 and 31%. Reductions were observed on PM emissions particularly for the sunflower oil blends, while NOx remained at baseline levels. Comparison with the emission levels measured when using esterified fuels of the same feedstocks suggests that SVO presence does not affect engine exhaust in the same way as biodiesel. The vegetable oil presence in the fuel appeared to suppress the formation of nucleation mode particles. Straight rapeseed oil increased carbonyl compound emissions over all cycles tested and resulted in higher acroleine/acetone presence in the carbonyl compound composition.  相似文献   

11.
Vegetable oil is one of the main first generation liquid biofuels. The fuel characteristics of vegetable oil such as viscosity and atomization cannot be accommodated by existing diesel engines. An alternate process has been developed to improve the fuel characteristics of vegetable oils through the process of alcoholysis to produce a fuel called biodiesel. It can be used in engines as substitute for fossil fuel. This paper reviews the characteristics of different oils available for biodiesel production and the production technologies, engine performance using vegetable oil and biodiesel, and emission studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model.  相似文献   

13.
Renewable fuels produced from vegetable oils are an attractive alternative to fossil-based fuel. Different type of fuels can be derived from these triglycerides. One of them is biodiesel which is a mono alkyl ester of the vegetable oil. The biodiesel is produced by transesterification of the oil with an alcohol in the presence of a catalyst. Another kind of fuel (which is similar to petroleum-derived diesel) can be produced from the vegetable oil using hydroprocessing technique. This method uses elevated temperature and pressure along with a catalyst to produce a fuel termed as ‘renewable diesel’. The fuel produced has properties that are beneficial for the engine as well as the environment. It has high cetane number, low density, excellent cold flow properties and same materials can be used as are used for engine running on petrodiesel. It can effectively reduce NOx, PM, HC, CO emissions and unregulated emissions as well as greenhouse gases as compared to diesel. The fuel is also beneficial for the after-treatment systems. Trials in the field have shown that the volumetric fuel consumption of renewable diesel is higher than petrodiesel and nearly proportional to the volumetric heating value. The present review focuses on the hydroprocessing technique used for the renewable diesel production and the effect of different parameters such as catalyst, reaction temperature, hydrogen pressure, liquid hourly space velocity (LHSV) and H2/oil ratio on oil conversion, diesel selectivity, and isomerization. The review also summarizes the effect; renewable diesel has on combustion, performance, and emission characteristics of a compression ignition engine.  相似文献   

14.
Numerous studies explored the possibility and effective strategies for supplementing hydrogen along with fossil or biofuels on internal combustion engines. Hydrogen is also being employed for formulating fuels such as hydrogen compressed natural gas in the gaseous form and hydrogenated biofuels in the liquid form. The present study evaluates (i) hydrogen usage on the fuel formulation and (ii) investigates the engine operation of an automotive turbocharged diesel engine operated with karanja biodiesel blended diesel (B20) as a reference fuel. Existing literature outlines that biodiesel blends possess lower energy content and emit higher nitric oxide (NO) emission than fossil diesel. The present research paper partially hydrogenates karanja biodiesel using an autoclave reactor with a palladium catalyst to increase the saturation levels and mitigate the biodiesel-NO penalty. Besides, the drop in energy release of B20 is compensated through the provision of hydrogen induction along the intake manifold. The hydrogen flow rates to the turbocharged engine are maintained at a fixed energy share of 10%. Both biodiesel and hydrogenated biodiesel were blended on a volume basis (20%) with fossil diesel (80%) and are designated as B20 and HB20, respectively. The test results reveal that HB20 effectively mitigates the biodiesel-NO penalty with a maximum reduction of 29.8% compared to B20. Further, hydrogen induction yielded a significant improvement (23.7%) in fuel consumption with HB20 relative to B20 without hydrogen addition. The compounding effect of hydrogen usage on the engine operation and fuel formulation exhibited a better performance and emission trade-off at mid load conditions.  相似文献   

15.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

16.
Biodiesel is receiving serious attention globally as a potential alternative fuel for replacing mineral diesel, partially or fully. In this review paper, most prominent methods of biodiesel production commercially, life-cycle analysis and economic issues related to biodiesel, engine performance, combustion and emission characteristics including particulate, engine compatibility issues and effect of biodiesel usage on engine component wear and lubricating oil are comprehensively discussed. Majority of biodiesel produced globally is via base-catalyzed transesterification process since this is a low temperature and pressure process, having high conversion rates without intermediate steps, and it uses inexpensive materials of construction for the plant. Catalyst types (alkaline, acidic or enzymatic), catalyst concentration, molar ratio of alcohol/oil, reaction temperature, moisture content of reactants, and free fatty acid (FFA) content of oil are the main factors affecting biodiesel (ester) yield from the transesterification process. Substantial reduction in particulate matter (PM), total hydrocarbons (THC) and carbon monoxide (CO) emissions in comparison to mineral diesel, and increased brake specific fuel consumption (BSFC) and oxides of nitrogen (NOX) emissions are reported by most researchers using unmodified compression ignition (CI) engines. This review covers several aspects, which are not covered by previous review articles, such as effect of biodiesel on unregulated emissions, effect of biodiesel on carbon deposits, wear of key engine components, and lubricating oil in long-term endurance studies. It emerges from literature review that even minor blends of biodiesel help control emissions and ease pressure on scarce petroleum resources without sacrificing engine power output, engine performance and fuel economy. This review underscores that future studies should focus on optimization of fuel injection equipment and hardware modifications to develop dedicated biodiesel engines, improve low temperature performance of biodiesel fuelled engines, develop new biodiesel compatible lubricating oil formulations and special materials for engine components before implementing large-scale substitution of mineral diesel by biodiesel globally.  相似文献   

17.
ABSTRACT

For fetching day-to-day energy needs, current energy requirement majorly depends on fossil fuels. But ambiguous matter like abating petroleum products and expanding air pollution has enforced the experts to strive for another fuel which can be used as an alternative or reduce the applications of fossil fuels. Considering the issues, the main objective of the present study is to find the feasibility by using blends of rice bran oil biodiesel and diesel which are used as pilot fuels by blending 10% and 20% biodiesel in fossil diesel and biogas, introduced as gaseous fuel by varying its mass flow rate in a dual-fuel engine mode. An experimentation study was carried out to find the performance and emission parameters of the engine relative to pure diesel. The results were very much similar to the majority of researchers who used biodiesel and gaseous fuels in a dual-fuel engine. Brake specific fuel consumption (BSFC) of the engine was noticed to have increased, while brake thermal efficiency was on the lower side in dual fuel mode in comparison with regular diesel. In relation with conventional diesel, it was noticed that combined effect of rice bran methyl esters and varying mass flow rate of biogas showed a decrement in NO x and smoke emissions, whereas HC and CO exhalations were on higher side when biogas and biodiesel were utilized collectively in dual-fuel engine. Hence, it was concluded that combination of blends of biodiesel and diesel and introduction of biogas in the engine can be a promising combination which can be used as a substitute fuel for addressing future energy needs.  相似文献   

18.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

19.
本文主要针对降低柴油机燃用酸化油生物柴油及其混合燃料的NOx、烟度排放的方法进行了试验研究。采用乙醇/生物柴油混合燃料法和推迟供油提前角两种方法在R4105T型柴油机上进行了试验。结果表明,在不影响动力性前提下燃用添加5%的乙醇的混合柴油,NOx及碳烟的排放均有明显下降。推迟供油提前角能有效的降低NOx的排放,但碳烟排放量增加,功率下降,燃料经济性变差。  相似文献   

20.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号