首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum-based alloy materials as effective cocatalysts in improving the performance of photocatalytic H2 production have raised great interest. Herein, a facile strategy of chemical reduction is established to synthesize bimetallic PtNi nanoparticles on 2D g-C3N4 nanosheets with excellent photocatalytic activity. The addition of PtNi nanoparticles can provide new H+ reduction sites and increase more active sites of the material. The synergistic effect between PtNi alloy nanoparticles and 2D g-C3N4 nanosheets can regulate electronic structure, narrow the band, accelerate charge transfer efficiency and inhabit the recombination of photo-induced electron (e) and hole pairs (h+), contributing to the improvement of hydrogen evolution activity. The optimal hydrogen evolution rate of Pt0.6Ni0.4/CN shows higher hydrogen evolution rate (9528 μmol·g−1·h−1), which is 13.1 times than that of pure g-C3N4 nanosheets. Besides, a possible mechanism of photocatalytic hydrogen generation has been brought up according to a series of physical and chemical characterization. This work also provides a potential idea of developing cocatalysts integrating metal alloys with 2D g-C3N4 nanosheets for promoting photocatalytic hydrogen evolution.  相似文献   

2.
AuPd bimetallic nanoparticle (NP) modified ultra-thin graphitic carbon nitride nanosheet photocatalysts were synthesized via photochemical deposition-precipitation followed by hydrogen reduction. The crystal structure, chemical properties, and charge carrier behavior of these photocatalysts were characterized by X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS), transient photovoltage spectroscopy (TPV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and UV-Vis diffuse-reflectance spectroscopy (DRS). Photocatalytic H2 evolution experiments indicate that the hydrogen treated AuPd nanoparticles can effectively promote the separation efficiency of electron-hole pairs photo-excited in the g-C3N4 photocatalyst, which consequently promotes photocatalytic H2 evolution. The 1.0 wt% AuPd/g-C3N4 (H2) composite photocatalyst showed the best performance with a corresponding photocatalytic H2 evolution rate of 107 μmol h?1. The photocatalyst can maintain most of its photocatalytic activity after four photocatalytic experiment cycles. These results demonstrate that the synergistic effect of light reduction and hydrogen reduction of AuPd and g-C3N4 help to greatly improve the photocatalytic activity of the composite photocatalyst.  相似文献   

3.
Ceria dioxide supported on graphitic carbon nitride (CeO2/g-C3N4) composites were facilely synthesized to be application for photocatalytic hydrogen (H2) generation in this present work. The physical and chemical properties of CeO2/g-C3N4 nanocomposites were determined via a series of characterizations. The CeO2/g-C3N4 composites prepared by facile thermal annealing and rotation-evaporation method exhibit excellent photocatalytic H2 evolution with visible-light illumination. The best hydrogen generation rate of CeO2/g-C3N4 composite with 1.5 wt% Pt is 0.83 mmol h−1 g−1, which is almost same as that of composite with 3 wt% Pt prepared by simple physical mixing method. The significantly developed photocatalytic activity of CeO2/g-C3N4 composite is majorly ascribed to the stronger interfacial effects with the more visible-light absorbance and faster electron transfer. This work reveals that construction of the CeO2/g-C3N4 composite with high disperse and close knit by the facile thermal annealing and rotation-evaporation method could be an effective method to achieve excellent photocatalytic hydrogen evolution performance.  相似文献   

4.
The photocatalytic water splitting for generation of clean hydrogen energy has received increasingly attention in the field of photocatalysis. In this study, the Ta2O5/g-C3N4 heterojunctions were successfully fabricated via a simple one-step heating strategy. The photocatalytic activity of as-prepared photocatalysts were evaluated by water splitting for hydrogen evolution under visible-light irradiation (λ > 420 nm). Compared to the pristine g-C3N4, the obtained heterojunctions exhibited remarkably improved hydrogen production performance. It was found that the 7.5%TO/CN heterojunction presented the best photocatalytic hydrogen evolution efficiency, which was about 4.2 times higher than that of pure g-C3N4. Moreover, the 7.5%TO/CN sample also displayed excellent photochemical stability even after 20 h photocatalytic test. By further experimental study, the enhanced photocatalytic activity is mainly attributed to the significantly improve the interfacial charge separation in the heterojunction between g-C3N4 and Ta2O5. This work provides a facile approach to design g-C3N4-based photocatalyst and develops an efficient visible-light-driven heterojunction for application in solar energy conversion.  相似文献   

5.
g-C3N4 has shown great potentials in photocatalytic water splitting to produce hydrogen. Herein, we successfully synthesized g-C3N4 nanosheets via exfoliating bulk g-C3N4. And different metal nanoparticles were photo-deposited onto the surface of g-C3N4 nanosheets. The photocatalytic H2 production activity of g-C3N4 nanosheets increased from 0 to 11.2 μmol/h/gcat. The Pt loaded g-C3N4 nanosheets manifested the highest H2 production activity with a rate of 589.4 μmol/h/gcat. In addition, the hydrogen evolution rate was further enhanced with addition of external bias to fabricate a photoelectrocatalytic (PEC) system. And the maximum hydrogen production rate (23.1 mmol/h/m2) was obtained at a voltage of 0.6 V (vs. Ag/AgCl). The enhancement in H2 production may be due to the following reasons: (1) Two-dimensional atomic flakes is beneficial to increase the specific surface area of g-C3N4, enhance the mobility of carriers, and improve the energy band structure, (2) Pt nanoparticles play an important role in g-C3N4 electron transport, (3) the g-C3N4 nanosheets loaded with Pt nanoparticles exhibited significant enhancement in photoelectrocatalytic performance, which may be attributed to its enhanced electronic conductivity and photoelectrochemical surface area, (4) Pt inhibited the recombination of photogenerated carriers and significantly improved the photocatalytic performance. The enhancement mechanism was deeply discussed and explained in this work.  相似文献   

6.
Photocatalytic hydrogen evolution plays a critical role in the exploration of the clean and sustainable energy. Owing to its special structure and features, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted tremendous attention. However, some deficiencies of pristine g-C3N4 inhibit its photocatalytic application, particularly the low quantum efficiency of hydrogen evolution. Therefore, it is valuable to develop 2D new composites based on g-C3N4 so that the synergistic effects of the two original materials can be achieved. This article attempts to summarize the modification strategies of 2D g-C3N4-based composites, including the construction of heterojunctions, morphology control, doping method, surface modification and co-catalyst loading. The application and progress in photocatalytic hydrogen evolution are also highlighted. The limitations are taken into account to provide further information for the improvement in the quantum efficiency of hydrogen by 2D g-C3N4-based composites.  相似文献   

7.
Ion doping is an effective method to improve the photocatalytic activity of graphitic carbon nitride (g-C3N4) by providing a photocarriers transfer channel. But limited by the bonds in heptazine rings, photoelectrons are still trapped in the structure. Therefore, both potassium ions and nitrogen defects were successfully introduced into g-C3N4 by high temperature calcination to accelerate the charges transfer between both interlayers and intralayer of g-C3N4. The results showed that the hydrogen production rate of g-C3N4 modified simultaneously by nitrogen defects and potassium ions reaches 1722.4 μmol·g−1·h−1, which is 8 times that of pristine g-C3N4. Based on various characterization techniques and DFT calculations, we attributed the enhanced photocatalytic hydrogen evolution to the improved light adsorption, more delocalized HOMO-LUMO, and stronger interlayer interactions. This work will provide a promising way to enhance photocatalytic hydrogen evolution of g-C3N4 and a possible mechanism was proposed.  相似文献   

8.
In previous studies, it has been shown that phosphorus and phosphate can improve the conductivity, change the electronic structure, and accept electrons from catalysts. In this study, we obtained phosphorylated NiAl-layered double hydroxide (P-LDH) nanosheets and used them as a novel cocatalyst in photocatalytic hydrogen evolution. After assembly with g-C3N4 via an in situ process, these noble-metal-free composite photocatalysts showed superior photocatalytic hydrogen evolution activity. It was also found that the efficiency of H2 production on the optimal composite was 1.5 times that of Pt-modified g-C3N4. Characterization of the photocatalysts revealed that the effects of P-LDH were different from those of other bimetallic LDHs, showing a lower overpotential and faster reaction kinetics of H2 evolution. Moreover, it was found that P-LDH has a higher surface work function than that of g-C3N4, leading to the formation of an interfacial electric field from CN toward P-LDH. Therefore, modifying P-LDH can efficiently improve the interfacial charge transfer rate, suppress photogenerated charge recombination, and lower the surface overpotential of g-C3N4. This study serves as guidance on the design of more effective cocatalysts for photocatalytic hydrogen evolution reactions.  相似文献   

9.
In photocatalytic field, it is a significant challenge to synthesize cocatalyst with high performance, noble-metal free and facile methods to recycle. Herein, carbon layer coated Fe3C (Fe3C@C) nanoparticles were prepared by one-step method and for the first time utilized as highly efficient cocatalysts for improving visible-light-driven hydrogen evolution activity of g-C3N4. The photocatalytic hydrogen evolution rate of optimal Fe3C@C/g-C3N4 was about 27.2 times of bare g-C3N4 samples. Furthermore, the Fe3C@C/g-C3N4 composite catalyst showed excellent stability and reusability. The apparent quantum yield (AQY) of the optimized FeC@C/g- C3N4 reaches 0.501% and 0.124% at 400 nm and 420 nm, respectively. The AQY of the FeC@C/g- C3N4 is 26.2 times higher than that of g-C3N4 at 400 nm Fe3C@C has an extraordinary cocatalytic effect for g-C3N4 photocatalytic hydrogen evolution mainly due to three aspects: Firstly, the Fe3C acts as a trap to lure electrons because of its lower Fermi energy level and higher conductivity, which can increase the hydrogen production activity by trapping the photogenerated electrons produced by g-C3N4; Secondly, the coated carbon layer can provide chemical protection for Fe3C nanoparticles and promote the transfer of photogenic electrons, thus further improving the efficiency and stability of photocatalytic hydrogen production; Thirdly, the strong magnetic property of Fe3C@C nanoparticles gives Fe3C@C/g-C3N4 photocatalysts the advantages of low cost and high recovery efficiency. It is believed that this work provides a new strategy and possibility for the application of photocatalytic hydrogen production.  相似文献   

10.
On account of on the dominant performance of Ni2P, rGO and g-C3N4 itself, with a view to conquer the disadvantages of Ni2P, rGO and g-C3N4 its own, the g-C3N4/rGO/Ni2P is successfully designed and prepared by a simple hydrothermal reaction, which is used in dye-sensitized system for high-efficient photocatalytic H2 evolution. The rGO is adhered to the outside appearance of the g-C3N4 nanosheets and fish-scale shape Ni2P is anchored on the surface of rGO and g-C3N4. The above three forms a synergistic effect. The maximum amount of H2 evolution reaches about 266 μmol for 5 h over the g-C3N4/rGO/Ni2P photocatalyst when the content of rGO is 8%, which is 10.6 times higher than g-C3N4. Synergy between the above three materials is certified by some characterizations and the results of which are consistent with each other. In addition, the possible mechanism of photocatalytic hydrogen production is proposed.  相似文献   

11.
In this work, we researched the effect of PCN-222 (M = Ni, Fe, Co) (PM) with different metal ligands on their photocatalytic performance. Compared with PFe and PCo, PNi has the highest photocatalytic hydrogen evolution efficiency due to the narrowest bandgap and the highest conduction band (CB) position. Furthermore, PCN-222(M)/g-C3N4 (PM/CN) heterojunctions was synthesized by one-pot solvothermal method in which PNi/CN displayed the most outstanding photocatalytic activity for H2 evolution. PNi/CN-1 displayed the highest photocatalytic activity. Its hydrogen evolution rate is 19.3 and 3.7 times higher than that of PNi and CN, respectively. A mechanism is proposed to expound the roles of PNi and the enhancement of visible-light photocatalytic performance of the PNi/CN. This work presents a new perspective for the development of high performance photocatalysts for hydrogen production under visible-light driven.  相似文献   

12.
Molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared via a facile impregnation method. The physical and photophysical properties of the MoS2–g-C3N4 composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microcopy (HRTEM), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The photoelectrochemical (PEC) measurements were tested via several on–off cycles under visible light irradiation. The photocatalytic hydrogen evolution experiments indicate that the MoS2 co-catalysts can efficiently promote the separation of photogenerated charge carriers in g-C3N4, and consequently enhance the H2 evolution activity. The 0.5wt% MoS2–g-C3N4 sample shows the highest catalytic activity, and the corresponding H2 evolution rate is 23.10 μmol h−1, which is enhanced by 11.3 times compared to the unmodified g-C3N4. A possible photocatalytic mechanism of MoS2 co-catalysts on the improvement of visible light photocatalytic performance of g-C3N4 is proposed and supported by PL and PEC results.  相似文献   

13.
A novel CoSeO3/g-C3N4 composite photocatalyst with Z-scheme heterostructure is constructed through electrostatic self-assembly to be utilized in photocatalytic hydrogen evolution. The optimal photocatalytic H2 evolution rate of CoSeO3/g-C3N4 hybrids and apparent quantum yield (AQY) have raised about 65.4 times under full light irradiation with no noble metal cocatalyst loading than that of pure g-C3N4. The CoSeO3 semiconductor is firstly prepared for assisting to elevate the photocatalytic hydrogen evolution activity. After combining with g-C3N4, CoSeO3/g-C3N4 hybrids with a sheet-sheet structure enhance the contact area with water and broaden the light absorption region as well as reduce transfer resistance of carriers. Moreover, the photo generated carriers possess a typical direct Z scheme transmission, which decreases the recombination of electrons and holes. This work offers a new choice for constructing a Z scheme heterostructure to apply in photocatalytic water reduction, and offers a deep view to explain the elevated photocatalytic activity.  相似文献   

14.
Novel carbon dots (CDs)/graphitic carbon nitride (g-C3N4) hybrids were fabricated via an in situ thermal polymerization of the precursors, urea and glucose. This heterojunction catalyst exhibited enhanced photocatalytic H2 evolution activity under visible-light (λ > 420). A sample of CDs/g-C3N4 hybrids, CN/G0.5, which was prepared from 0.5 mg of glucose in 6.0 g of urea (8.3 × 10?3 wt% glucose), exhibited the best photocatalytic performance for hydrogen production from water under visible light irradiation, which is about 4.55 times of that of the bulk g-C3N4 (BCN). The improvement of photocatalytic activity was mainly attributed to the construction of built-in electric field at the interface of CDs and g-C3N4, which could improve the separation of photogenerated electron-hole pair. Moreover, the tight connection of CDs with g-C3N4 would serve as a well electron transport channel, which could promote the photocatalytic H2 evolution ability.  相似文献   

15.
Developing high activity and eco-friendly photocatalysts for water splitting is still a challenge in solar energy conversion. In this paper, B doped g-C3N4 quantum dots (BCNQDs) were prepared via a facile molten salt method using melamine and boron oxide as precursors. By introducing BCNQDs onto the surface of g-C3N4, g-C3N4/BCNQDs heterojunction was constructed via hydrothermal treatment. The resulting g-C3N4/BCNQDs heterojunction exhibits enhanced hydrogen evolution performance for water splitting under visible light irradiation. The mechanism underlying the improved photocatalytic activity was explored and discussed based on the formation of heterojunction between g-C3N4 and BCNQDs with well-matched band structure.  相似文献   

16.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

17.
A novel hierarchical TiO2 spheroids embellished with g-C3N4 nanosheets has been successfully developed via thermal condensation process for efficient solar-driven hydrogen evolution and water depollution photocatalyst. The photocatalytic behaviour of the as-prepared nanocomposite is experimented in water splitting and organic pollutant degradation under solar light irradiation. The optimal ratio of TiO2 spheroids with g-C3N4 in the nanocomposite was found to be 1:10 and the resulting composite exhibits excellent photocatalytic hydrogen production of about 286 μmol h?1g?1, which is a factor of 3.4 and 2.3 times higher than that of pure TiO2 and g-C3N4, respectively. The outstanding photocatalytic performance in this composite could be ascribed as an efficient electron-hole pair's separation and interfacial contact between TiO2 spheroids with g-C3N4 nanosheets in the formed TiO2/g-C3N4 nanocomposite. This work provide new insight for constructing an efficient Z-scheme TiO2/g-C3N4 nanocomposites for solar light photocatlyst towards solar energy conversion, solar fuels and other environmental applications.  相似文献   

18.
CdS and g-C3N4 are famous semiconductors in photocatalytic hydrogen evolution, however, their low efficiencies limit their further application. Here, a highly efficient ternary catalyst CdS/(Pt/g-C3N4) was reported and its photocatalytic hydrogen production activity reached up to 1465.9 μmol/h/g, which is 5.3 times of Pt/CdS and 4.0 times of Pt/g-C3N4, respectively. TEM and HRTEM images demonstrate the Pt nanoparticles exists on the interface of between CdS and g-C3N4 acting as a cocatalyst for hydrogen evolution. SPV spectra and electrochemical tests demonstrate that Pt as bridge between CdS and g-C3N4 also accelerates the electrons transforming which benefits for the inhibition of the recombination of photoexcited electrons and holes. This study demonstrated the dual roles of interface Pt and provides a new method to design a highly efficient photocatalyst.  相似文献   

19.
Development of low cost and efficient non-noble-metal cocatalyst is still a hot topic to improve the activity of g-C3N4 in photocatalytic water splitting to produce H2. As a potential cocatalyst in photocatalytic application, transition metal phosphides (TMPs) have been proved to greatly enhance the photocatalytic H2 evolution performance comparable to noble metal Pt. Modifying TMPs by incorporation of hetero-metal has also been reported as an effective strategy for their electronic structure regulation and optimizing the intermediates absorption energy, however, which is rarely reported in the field of photocatalysis. Herein, the 0D/2D heterojunction is constructed by high-dispersity Mo-doped Ni2P nanodots supported on g-C3N4 nanosheets, which exhibits the significantly improved photocatalytic H2 evolution performance compared with that of Ni2P/g-C3N4 and Pt/g-C3N4. Specifically, the optimal H2 evolution rate reaches 67.6 μmol h−1 over Mo–Ni2P/g-C3N4 sample, which is 6.0 and 2.4 times higher than those of Pt/g-C3N4 and Ni2P/g-C3N4, respectively. The fascinating result mainly stems from the improved separation efficiency of charge carriers and more effective electron donating reaction sites resulted from the electronic structure adjustment through doping Mo element into Ni2P as cocatalyst. This work provides a valid evidence for the modification of cocatalyst to realize high H2 evolution performance, opening up new opportunities and possibilities for the application of TMPs in the photocatalytic field.  相似文献   

20.
Graphitic carbon nitride (g-C3N4)-based heterostructured photocatalysts have recently attracted significant attention for solar water splitting and photocatalytic hydrogen (H2) evolution, because of their alterable physicochemical, optical and electrical properties, such as tunable band structure, ultrahigh specific surface area and controllable pore size, defect formation and active sites. On the other hand, metal-organic frameworks (MOFs) possess a favorable surface area, permanent porosity and adjustable structures that allow them to be suitable candidates for diverse applications. In this review, we therefore comprehensively discuss the structural properties of heterogeneous g-C3N4/MOF-based photocatalysts with a special emphasis on their photocatalytic performance regarding the mechanism of heterogeneous photocatalysis, including advantages, challenges and design considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号