首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the design and synthesis of a novel Au/TiO2/Au heterostructure and its implementation as a photoanode for photoelectrochemical (PEC) application. The Au/TiO2/Au heterostructure was produced by assembling Au nanoparticles and TiO2 nanorods (NRs) onto FTO substrate, followed by electrodepositing Au nanoparticles on the TiO2NRs. Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize the prepared photoanodes. Compared to the system involving Au nanoparticles directly linked to TiO2, this Au/TiO2/Au heterostructure exhibits significant improved photoresponse as a photoanode, as demonstrated good performance in PECs. This study illustrates the importance of pre-deposited Au underlayers in influencing PEC properties of hybrid assembled nanostructures. As the Au/TiO2NRs/Au photoanodes are easily fabricated and highly stable, Au/TiO2NRs/Au can serve as a good substitution for TiO2 in a variety of solar energy driven applications including PEC water splitting, photocatalysis, and solar cells.  相似文献   

2.
Constructing core/shell heterojunction has always been an effective strategy for photoelectrochemical (PEC) water splitting owing to special morphology characterization and band structure. Herein, we synthesized a series of In2O3/In2S3 core/shell structure photoanodes via a simple two-step hydrothermal method to improve the PEC performance of In2O3. Various methods were employed to investigate the influence of sulfurization time on the morphologies, microstructures, photoelectrochemical properties and band structures of the as-prepared photoanodes. The results indicated that the In2O3/In2S3-5 possessed stronger visible light absorption, faster charge transfer rate and higher electron carrier density, which resulted in an excellent PEC performance. Under visible light irradiation, the photocurrent density of the In2O3/In2S3-5 photoanode reached 0.53 mA cm−2 at 1.23 V vs RHE in 1 M NaOH solution, which was about twice as high as that of the pristine In2O3. Furthermore, the onset potential of the In2O3/In2S3-5 photoanode had an obvious negative shift (~200 mV) when compared to the pure In2O3 nanorod photoanode.  相似文献   

3.
A possibility of semiconductor-sensitized thin film solar cells have been proposed. Nanocrystalline In2S3-modified In2O3 electrodes were prepared with sulfidation of In2O3 thin film electrodes under H2S atmosphere. The band gap (Eg) of In2S3 estimated from the onset of the absorption spectrum was approximately 2.0 eV. The photovoltaic properties of a photoelectrochemical solar cell based on In2S3/In2O3 thin film electrodes and I/I3 redox electrolytes were investigated. This photoelectrochemical cell could convert visible light of 400–700 nm to electron. A highly efficient incident photon-to-electron conversion efficiency (IPCE) of 33% was obtained at 410 nm. The solar energy conversion efficiency, η, under AM 1.5 (100 mW cm−2) was 0.31% with a short-circuit photocurrent density (Jsc) of 3.10 mA cm−2, a open-circuit photovoltage (Voc) of 0.26 V, and a fill factor ( ff ) of 0.38.  相似文献   

4.
In this work, we proposed a simple and new method to fabricate Metal-organic frameworks (MOFs) derived Co3O4 modified TiO2 nanorods (NRs) photoelectrode by immersion and anneal treatment. The positively charged Co-MOF (ZIF-67) was adsorbed on the negatively charged TiO2 NRs by electrostatic interaction, and then annealed in air to obtain the Co3O4/TiO2 photoelectrodes. The photoelectrochemical (PEC) performance of the Co3O4/TiO2 photoelectrodes has been significantly improved compared with the pure TiO2, the best photocurrent density of Co3O4/TiO2 photoelectrode could reach 1.04 mA/cm2 (1.23 V vs RHE) which was almost 1.65 times than that of pure TiO2. On the Co3O4/TiO2 photoelectrodes, the significant improvement in PEC performance could be attributed to the constructed p-n heterostructure, which can promote charge transfer within the system and improve the efficiency of electron/hole separation. Meanwhile, under the action of the MOFs-derived Co3O4, the number of active sites increases significantly and visibly improve the photoresponse performance.  相似文献   

5.
To overcome the global challenges of energy crises and environmental threats, urea oxidation is a hopeful route to utilize urea-rich wastewater as an energy source for hydrogen production. Herein, we report an inorganic/organic type of nano-heterostructure (NHs–Ni-TiO2/p-NDIHBT) as a photoanode with excellent urea oxidation efficiency driven by visible light. This heterostructured photoanode consists of nickel (Ni)-doped TiO2 nanorods (NRs) arrays as an inorganic part and a D-A-D type organic polymer i.e p-NDIHBT as an organic part. The as-prepared photoanode was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The morphological studies of TEM confirm the coating of p-NDIHBT on Ni–TiO2 NPs (~1 μm). The consequence of heterostructure formation on optical and photoelectrochemical (PEC) properties of photoanode were explored through photoelectrochemical responses under visible light irradiation. The photoelectrochemical activity of Ni–TiO2 and Ni–TiO2/p-NDIHBT photoanode from linear sweep voltammetry (LSV) shows the ultrahigh photocurrent density of 0.36 mA/cm2 and 2.21 mA/cm2, respectively measured at 1.965 VRHE. Electrochemical impedance spectroscopy (EIS) of both photoanodes shows a highly sensitive nature toward the urea oxidation reaction. The hybrid photoanode also exhibits high photostability, good solar-to-hydrogen conversion efficiency, and high faradaic efficiency for urea oxidation.  相似文献   

6.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

7.
A novel graphene-based three-dimensional (3D) aerogel embedded with two types of functional nanomaterials had been prepared by a facile one-pot hydrothermal process. During the hydrothermal reaction, graphene, TiO2 nanoparticles and MoS2 nanosheets were self-assembled into the 3D interconnected networks aerogel, where the uniformly dispersed TiO2 nanoparticles were densely anchored onto the graphene nanosheets and decorated with the ultrathin MoS2 nanosheets. The UV–vis DRS and PL spectra measurement shows that the MoS2/P25/graphene aerogel exhibits enhanced light absorption and efficient charge separation properties. As a new photocatalyst, the photocatalytic activity was evaluated by photoelectrochemical test and photodegradation methyl orange (MO) under UV irradiation, an improvement of photocurrent was observed, as 6 times higher for MoS2/P25/graphene aerogel (37.45 mA/cm2) than pure P25 at +0.6 V, and the fastest photodegradation of MoS2/P25/graphene aerogel was found within 15 min. The improved photocatalytic activity is attributed to the porous structure, good electrical conductivity and the maximization of accessible sites of the unique 3D graphene aerogel, the increasing active adsorption sites and photocatalytic reaction centers for the introduction of MoS2 nanosheets, and the positive synergetic effect between the three components in this hybrid. This work demonstrates that the as-prepared MoS2/P25/graphene aerogel may have a great potential application in photoelectrochemical hydrogen production and pollution removal.  相似文献   

8.
In this study, GO and Fe2P were used as co-catalysts to improve the separation efficiency of photogenerated electron-hole pairs in an In2S3 photocatalyst. The metallic character of Fe2P provided a cheap substitute for traditional noble metal co-catalyst for H2 production in aqueous media. The GO/Fe2P/In2S3 composite demonstrated significantly enhanced photocatalytic activity compared to pure In2S3, delivering a H2 production rate of 483.35 μmol h?1 g?1 and a quantum yield was 22.68% under visible light irradiation. The design of the photocatalyst was optimized using “Design Expert” software. The analysis showed that a GO loading of 1.18 wt%, a Fe loading of 5.36 wt%, and a calcination temperature of 180 °C were optimal.  相似文献   

9.
The development of new sources of renewable energy fuels like hydrogen remains challenging considering the nowadays society energy needs on a day-to-day basis. In this context, hybrid nanostructures conformed by TiO2 nanoparticles sensitized with bundles of rod-like Sb2S3 (stibnite) on the surface of reduced graphene oxide (TiO2/Sb2S3/RGO), can pave the way in this direction, as offering heterostructures that can be employed as the active phase in photo-anodes for photoelectrochemical water oxidation. For that, these TiO2/Sb2S3/RGO heterostructures are able to extend the light absorption to the visible range, enhance the charge separation and transportation, and improve the conductivity of the catalyst. Furthermore, the method of synthesis, though simple, implies a one-pot strategy by which the TiO2 nanoparticles and the Sb2S3 rod-like particles are independently produced at the surface of RGO sheets, warranties the proper improved function of the hybrids and offers the engineering of future chalcogenide-based catalysts with promising water splitting photoelectrochemical properties.  相似文献   

10.
Hydrogen production through photoelectrochemical (PEC) water splitting on photocatalyst is a green and clean method. In this study, we use density functional theory (DFT) calculations to find that the cage-like InP quantum dots (QDs) sensitized TiO2 is an effective photocatalyst for PEC water splitting under visible-light. A 16-ps first-principle molecular dynamics (FPMD) simulation results indicate that the cage-like InP-12, InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are stable at room temperature (300 K). Furthermore, the calculated energy gaps of InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are about 2.0 eV, which are suitable for visible-light absorption. Stable InP-20/TiO2 heterojunction structure was also obtained by FPMD simulation, and the electronic structure calculation result indicates that the InP-20/TiO2 heterojunction has a favorable type-II band aligment, which could prevent the recombination of photoexcited carriers. Finally, the possible reaction pathways of hydrogen production on InP-20/TiO2 heterojunction were investigated. It is found that energy barrier of hydrogen production of the InP-20/TiO2 is 2.56 eV lower than pure TiO2. Our calculations imply that InP QDs sensitized anatase TiO2 is an effective photocatalyst for visible-light PEC water splitting.  相似文献   

11.
Hydrogen production by solar energy is an efficient and clean approach to fulfill the future energy demand. Herein, a novel multi-shelled porous heterostructure CoOx/CdS/TiO2 photoanode was fabricated by the hydrothermal and chemical method. There were more active sites, suitable surface defects and heterojunction structures in the homogeneous-porous-multi-shelled CoOx/CdS/TiO2 photoanode. It showed a photocurrent density of 2.89 mA/cm2 at 1.23V vs. RHE, which is 2.22 fold of the original TiO2 photoanode. The heterostructure fabrication of the CdS/TiO2 could broaden the visible light absorption and enhance the charge separation efficiency. The multi-shelled homogeneous porous structure of the CoOx/CdS/TiO2 further enhanced the charge separation efficiency and accelerated the interfacial oxygen evolution kinetics. The mechanism for the enhanced photoelectrochemical water splitting of favorable CoOx/CdS/TiO2 photoanode is proposed.  相似文献   

12.
The optimization of photoelectrode is the key issue for the efficient photoelectrochemical water splitting process. In this work, the TiO2 photoanode is synthesized and modified with ZnIn2S4 nanosheets and Co-Pi cocatalyst (TiO2/ZnIn2S4/Co-Pi) for a favorable photoelectrochemical performance. The synthesis and modification process of the TiO2 photoanode are optimized. The physical and chemical characterizations indicate that the TiO2 has a nano-cauliflower-like structure and rutile crystal form modified with a network hexagonal ZnIn2S4 nanosheets and amorphous Co-Pi groups. After optimization of the hydrothermal and annealing process, the optimized TiO2 photoanode manifests a photocurrent density of 1.82 mA cm?2, 1.73-fold of the pristine TiO2 photoanode (1.05 mA cm?2). With the surficial ZnIn2S4 and Co-Pi modification, the photocurrent density of the TiO2/ZnIn2S4/Co-Pi photoanode is raised to 5.05 mA cm?2, 5.32-fold of the optimized TiO2 photoanode (1.82 mA cm?2). The applied bias photon-to-current efficiency, the charge separation and injection efficiencies of the TiO2/ZnIn2S4/Co-Pi photoanodes are 8.79, 3.40, and 1.64-folds of the optimized TiO2 photoanode. Combined the Tauc plot, valence band XPS spectra, EIS and Mott-Schottky analysis, the PEC water splitting mechanism could be that: (i) the type II heterojunction formed by the TiO2 and ZnIn2S4 semiconductors improves the charge separation/injection efficiencies; (ii) the Co-Pi groups facilitate the oxygen evolution kinetics; (iii) the Co-Pi groups and 2D ZnIn2S4 nanosheets synergistically enhance the charge separation efficiency. This investigation could offer a prospect of practical implementation for photoelectrochemical water splitting.  相似文献   

13.
The viability of the photocatalytic hydrogen production is closely related to the performance and long term stability of the photocatalyst. In this work rGO/TiO2 composites have been synthetized with graphene oxide (GO) ratios from 1% to 10% and experimentally assessed towards hydrogen generation from methanol solutions. The performance of the composite with 2% of rGO (2 GT) has been compared to bare TiO2 working with 20% volume methanol solution. The hydrogen production initial rate showed similar values with both photocatalysts decreasing after about 24 h. Further analysis of the photocatalytic process at longer times showed the negative influence of hydrogen accumulation in the reaction system. Thus, an experimental procedure with argon purge was developed and the behavior of TiO2 and 2 GT photocatalysts was compared. It is concluded that TiO2 keeps its activity after 8 operation cycles while 2 GT performance reduces progressively. This can be attributed to the further reduction of GO and the increase of defects in its structure.  相似文献   

14.
A novel three-dimensional (3D) core-shell nanostructure decorated with plasmonic Au nanoparticles (NPs) was prepared for photoelectrochemical water splitting. In the new nanostructure, ZnO nanorods (NRs) are perpendicular to ZnO nanosheets (NSs), and the ZnO NSs-NRs are coated with a thin TiO2 shell formed by liquid phase deposition. The plasmonic Au NPs were formed in situ on the surface of ZnO NSs-NRs@TiO2 by thermal reduction. A thin TiO2 shell and uniformly distributed Au NPs were successfully obtained. The photoconversion efficiency and photocurrent density of the 3D ZnO NSs-NRs@TiO2-Au nanostructure respectively reached 0.48% and 1.73 mA cm−2 at 1.23 V vs. reversible hydrogen electrode, 4.80 and 4.33 times higher than those of ZnO NSs, respectively. The thin TiO2 shell effectively promoted charge separation, while the surface plasmon resonance effects of the Au NPs improved the photocurrent density. The findings suggest that the 3D ZnO NSs-NRs@TiO2-Au nanostructure is a promising photoanode for photoelectrochemical water splitting.  相似文献   

15.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

16.
Arrayed porous iron-doped TiO2 with controllable pore size was prepared by using polystyrene spheres and its structure, morphology, composition and photoelectrochemical properties were characterized with X-ray diffraction, scanning electron microscope, inductively coupled plasma-atomic emission spectrometer and electrochemical methods. It is found that the photoelectrochemical properties of the arrayed porous TiO2 can be improved by doping adequate amount of iron in the lattice of TiO2 and the sample doped with 0.01 wt% Fe (based on Ti) exhibits the best photoelectrochemical performance. With doping 0.01 wt% Fe in TiO2, the photocurrent density of the sample is improved from 2.0 μA cm−2 to 10.0 μA cm−2 and its flat-band potential shifts from −0.38 V to −0.55 V (vs. SCE).  相似文献   

17.
In this work, unique γ-In2Se3 nanoparticles/α-In2Se3 nanosheets (In2Se3 NPS) homojunction was prepared to facilitate the transfer and separation of internal carriers, and then reduced graphene oxide (rGO) was introduced to enhance the photocatalytic activity of In2Se3 NPS by in-situ solvothermal method. The obtained In2Se3 NPS/rGO homo-heterojunctions exhibited 3.25 times higher H2 evolution rate (4497.24 μmol g−1 h−1) and good stability compared with pristine In2Se3 NPS, which was ascribed to efficient separation and migration of photogenerated electron-hole pairs, abundant active sites and reduced overpotential of H2 evolution over the above homo-heterojunction structure with strong interaction between rGO and In2Se3 NPS. This work provides a promising approach and new insight to fabricate homo-heterojunction photocatalyst with an excellent electronic structure toward photocatalytic water splitting.  相似文献   

18.
A series of reduced graphene oxide/TiO2 (RGO/TiO2) nanowire microsphere composites were synthesized with a facile one-step hydrothermal method using TiCl3 and graphene oxide (GO) as the starting materials, during which the formation of TiO2 and the reduction of GO occur simultaneously. The obtained nanocomposites were characterized with X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy, respectively. UV–vis absorption spectra showed that the absorption edges of TiO2 were extended into visible light region with the addition of RGO. The photocatalytic activities of the samples with and without Pt as cocatalysts were evaluated by hydrogen evolution from water photo-splitting under UV–vis light illumination. Enhanced photocatalytic properties were observed for the as-prepared RGO/TiO2 nanocomposites. The amount of hydrogen evolution from the optimized photocatalyst reached to 43.8 μmol h−1, which was about 1.6 times as high as that of bare TiO2. The results shown here indicate a convenient and applicable approach to further exploitation of high activity materials for photocatalytic water splitting applications.  相似文献   

19.
AgIn5S8 and AgIn5S8/TiO2 heterojunction nanocomposite with efficient photoactivity for H2 production were prepared by a low-temperature water bath deposition process. The resultant AgIn5S8 shows an absorption edge at ∼720 nm, corresponding to a bandgap of ∼1.72 eV, and its visible-light-driven photoactivity (100.1 μmol h−1) for H2 evolution is 9 times higher than that (11 μmol h−1) of the product derived from a hydrothermal process, while the obtained AgIn5S8/TiO2 heterojunction nanocomposites prepared by using commercially available TiO2 nanoparticles (P25) as TiO2 source exhibit remarkably improved photoactivity as compared to the pristine AgIn5S8, and the AgIn5S8/TiO2 nanocomposite with molar ratio of 1:10 shows a maximum photocatalytic H2 evolution rate (371.1 μmol h−1), which is 4.3 times higher than that (85 μmol h−1) of the corresponding AgIn5S8/TiO2 nanocomposite derived from a hydrothermal method. This significant enhancement in the photocatativity of the present AgIn5S8/TiO2 nanocomposite can be ascribed to the better dispersion of the AgIn5S8 formed on TiO2 nanoparticle surfaces and the more intimate AgIn5S8/TiO2 heterojunction structure during the water bath deposition process under continuously stirring as compared to the corresponding nanocomposite derived from a hydrothermal method. This configuration of nanocomposite results in fast diffusion of the photogenerated carriers in AgIn5S8 towards TiO2, which is beneficial for separating spatially the photogenerated carriers and improving the photoactivity. The present findings shed light on the tuning strategy of spectral responsive region and photoactivity of photocatalysts for efficient light-to-energy conversion.  相似文献   

20.
A ternary composites of MoO3/Ag/TiO2 nanotube arrays were synthesized by in-situ annealing of TiO2 nanotube arrays impregnated with AgNO3 over MoO3 powders. During the annealing process, the crystallization of the TiO2 nanotubes, the thermo-decomposition of AgNO3 to Ag nanoparticles, and the sublimation of MoO3 occur jointly. The photoelectrochemical measurements of the resultants indicate that MoO3/Ag/TiO2 nanotube arrays present better photoelectrochemical properties compared with Ag/TiO2 nanotube arrays and pristine TiO2 nanotube arrays. Especially, the highest photocurrent and open circuit voltage are up to 21.29 μA/cm2 and 0.058 V under visible light irradiation, whereas 1.77 and 3.87 times larger than those of TiO2 nanotube arrays, respectively. Superior photoelectrochemical stability and larger photo-conversion efficiency of the ternary composites are also demonstrated. The improved photoelectrochemical properties are related to the close interfacial contact among MoO3, Ag, and TiO2 as well as the surface plasma resonance of Ag in the ternary composites, which broaden the range of light response and enhance the efficiency of charge separation. This study provides a skillful solution to construct TiO2-based composite materials and demonstrates it is an unique architecture to promote the visible light driven photocatalytic application of TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号