首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this study, a simple hydrothermal method was used to prepare the cathode catalyst of microbial fuel cells (MFCs). The three-dimensional structure of ZIF-67 attached to the lamellar Ti3AlC2/ZnAl-layered double hydroxide (LDH) was observed. (010), (012), (015) were the obvious peaks of the composite ZIF-67@Ti3AlC2/ZnAl-LDH. Ti, N, C, Al, O, F were relatively uniformly distributed on the surface of the composite material. The maximum voltage of ZIF-67@Ti3AlC2/ZnAl-LDH-MFC was 576 mV and the stabilization time was 8 d. The maximum power density of ZIF-67@Ti3AlC2/ZnAl-LDH-MFC was 587 mW/m2, which was 1.32 times of Ti3AlC2/ZnAl-LDH-MFC (446 mW/m2) and 2.69 times of Ti3AlC2-MFC (218 mW/m2). Ti3AlC2 with large interlayer spacing and high specific surface area were perfectly composited with multi-layer nanosheets of ZnAl-LDH, and ZIF-67 attached to the surface enhanced the reaction center and activity of the composite material, which promoted oxygen reduction reaction and improved MFC performances.  相似文献   

2.
Iron-chelated electrocatalysts for the oxygen reduction reaction (ORR) in a microbial fuel cell (MFC) were prepared from sodium ferric ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid) (FeE), sodium ferric diethylene triamine pentaacetic acid (FeD) supported on carbon Vulcan XC-72R carbon black and multi-walled carbon nanotubes (CNTs). Catalyst morphology was investigated by TEM; and the total surfaces areas as well as the pore volumes of catalysts were examined by nitrogen physisorption characterization. The catalytic activity of the iron based catalysts towards ORR was studied by cyclic voltammetry, showing the higher electrochemical activity of FeE in comparison with FeD and the superior performance of catalysts supported on CNT rather than on Vulcan XC-72R carbon black. FeE/CNT was used as cathodic catalyst in a microbial fuel cell (MFC) using domestic wastewater as fuel. The maximum current density and power density recorded are 110 (mA m−2) and 127 ± 0.9 (mW m−2), respectively. These values are comparable with those obtained using platinum on carbon Vulcan (0.13 mA m−2 and 226 ± 0.2 mW m−2), demonstrating that these catalysts can be used as substitutes for commercial Pt/C.  相似文献   

3.
We describe how the morphology and electrocatalytic activity of Pt-Pd with low levels of Pt are dependent on the type of Pt precursor that is used for the impregnation on to Pd/C. When a Pt precursor with a negative charge (H2PtCl6) is used in the preparation medium (Pt-Pd/C-H), its electrostatic interaction with the carbon surface results in some Pt nanoparticles being deposited on the carbon separately from the Pd surface. Due to the absence of such an electrostatic interaction with the Pt(NH3)4Cl2 precursor, more selective deposition of Pt can be achieved on the Pd surface (Pt-Pd/C-N). Depending on the morphology, different electrocatalytic performance in oxygen reduction reaction would be observed. Compared to Pt-Pd/C-H, Pt-Pd/C-N shows 180% (half-cell at 0.9 V) and 160% (unit-cell at 0.8 V) enhanced performance, which is comparable to that on Pt/C. It is believed that the interaction between the Pt and the Pd substrate is more extensive in Pt-Pd/C-N than in Pt-Pd/C-H, and this is responsible for the large difference in the catalytic performances between these two catalysts.  相似文献   

4.
    
To reduce the high cost of oxygen reduction reaction (ORR) catalyst and improve the performance of the proton exchange membrane fuel cell (PEMFC), low-Pt or non-Pt catalysts have been studied in recent years. In this paper, PtFe alloy nanoparticles are loaded on porous carbon nanofiber (PCNF) via one-step modified glycol reduction method by adjusting solution pH. On the surface of PCNF, PtFe alloy nanoparticle can be uniformly dispersed with a narrow particle size distribution. The catalyst Pt4.8Fe/PCNF prepared in pH = 7 solution with PCNF as carbon support exhibits better ORR performance, which shows even 18 mV higher onset potential than that of commercial catalyst Pt/C (Johnson Matthey, JM20). Moreover, comparable durability is also obtained through accelerated durability test (ADT) test after 2000 cycles. The excellent performance of Pt4.8Fe/PCNF catalyst may attribute to the structural and electronic effects of transition metal in the PtFe alloy. The rough surface and porous structure of PCNF is also supposed to be beneficial for performance improvement.  相似文献   

5.
Performance of microbial fuel cells (MFCs) with carbon supported nickel phthalocyanine (NiPc)MnOx composite (MFC-1) and nickel phthalocyanine (MFC-2) incorporated cathode was compared with a control MFC with non-catalysed carbon felt as cathode (MFC-3) and MFC-4 having Pt on cathode (as benchmark reference control). MFC-1 exhibited power density of 8.02 Wm?3, which was four folds higher than control MFC-3 (2.08 Wm?3) and 1.14 times higher than MFC-2 (6.97 Wm?3). Coulombic efficiency of 30.3% obtained in MFC-1 was almost double of that obtained for control MFC-3 and it was 5.4% lesser as compared to MFC-4 (35.7%). Linear sweep voltammetry study of cathodes revealed that NiPc-MnOx could enhance the electrocatalytic activity of oxygen reduction reaction (ORR) in comparison to control cathode. However, the power recovery from MFC-1 was noted little lower than what obtained from MFC-4 (10.58 Wm?3), however the cost normalized power was two times higher than Pt catalyst on cathode. Thus, NiPc-MnOx based catalyst developed in this study has potential to enhance ORR in cathodes of MFCs in order to harvest more power.  相似文献   

6.
The performance of pyrolyzed and plasma-treated non-precious catalysts for the oxygen reduction is discussed in the light of their application in microbial fuel cells. An Ar-radio frequency (RF) plasma treatment is applied to enhance the electrochemical activity of iron(II) phthalocyanine (FePc)-based catalysts. The electrochemical properties of the catalysts are analyzed by galvanodynamic linear sweep voltammetry and chronoamperometric experiments. Surface elemental analysis of the catalysts is examined by means of X-ray photoelectron spectroscopy (XPS). The influence of plasma power and treatment time on the elemental surface concentration and performance of the catalysts is investigated. The electrochemical activity, expressed in terms of the current density at 0 V vs. Ag/AgCl, is up to 40% higher for the plasma-treated samples than for pyrolyzed ones. It is found that optimal treatment time was 30 min and optimal plasma power was 150 W for the best electroactivity of FePc-based catalysts. From the results of XPS data, it is revealed that Ar-plasma treatment of the catalysts leads to an increase in the oxygen and nitrogen concentration on the catalysts surface. A correlation is found between the activity and surface concentration of oxygen and nitrogen on the catalysts’ surface.  相似文献   

7.
Microbial fuel cells (MFCs) exploit the ability of microorganisms to generate clean energy from organic pollutants in wastewater. However, the poor cathode performance and the use of the expensive rare metal platinum as a catalyst limit their application and scalability. In this study, we have synthesised a Ni–Co/GO nanocomposite and applied it as a potential cathode catalyst to single-chamber MFCs. To improve the performance of a Ni–Co-based hybrid nanocomposite, the support of graphene oxide (GO) is covalently modified with γ-amino propyl tri-ethoxy silane (APTES) through a silane modification reaction. The physical and chemical properties of the synthesised materials are characterised with Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) techniques. A microscopic study has shown that metal nanoparticles are distributed uniformly on the MGO matrix. The electrocatalytic activity of the synthesised hybrid nanocatalysts is analysed for oxygen reduction reaction (ORR). A cyclic voltammetry experiment has shown that the Ni–Co/MGO catalyst exhibits a higher reduction peak current value and a higher positive onset potential than the Ni–Co/GO catalyst and Pt/C catalyst, indicating an enhanced ORR activity of the Ni–Co/MGO catalyst. Ni–Co/MGO also exhibits the highest initial current of 0.116 mA in the chronoamperometry test, which decreases to 0.049 mA after 16000 s. The electrochemical results demonstrate that the synthesised Ni–Co/MGO catalyst has a higher electrocatalytic activity and higher stability than the state-of-the-art Pt/C catalyst. More importantly, a MFC with Ni–Co/MGO as a cathode catalyst shows the maximum power density of 1003.18 mWm−2, which is much higher than in the case of the Ni–Co/GO catalyst (889.6 mWm−2) and approximately 2.1 times higher than that of the state-of-the-art Pt/C (483.48 mWm−2). Consequently, the Ni–Co/MGO nanocomposite also shows the highest open circuit voltage of 0.857 V among the other studied catalysts. Moreover, the Ni–Co/MGO catalyst has a lower biofouling level than a commercial 10 wt% Pt/C catalyst, which shows that the synthesised cathode catalyst is superior in terms of stability, overall performance and usage. These results suggest that the newly developed Ni–Co/MGO catalyst can be applied as a potential substitute for the Pt/C cathode catalyst for the practical application of MFCs.  相似文献   

8.
The purpose of this study is to develop a novel binary Iridium-Cobalt/C catalyst as a suitable substitute for platinum/C applied in proton exchange membrane fuel cells (PEMFCs). The carbon-supported IrCo catalysts were successfully synthesized using IrCl3 and C4H6CoO4 as the Ir and Co precursors respectively, in ethylene glycol (EG) refluxing at 120 °C. The nanostructured catalysts were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscope (TEM). Homogeneous catalyst particles supported on carbon showed a size of proximately 2 nm. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were conducted for the characterization of the catalyst performances. With a cathodic loading of 0.4 mgIr cm−2, 20%Ir-30%Co/C achieved a maximum power density of 501.6 mW cm−2 at 0.418 V, with a 50 cm2 H2/O2 single cell. Although such a performance is about 26% lower than commercial Pt/C catalyst, it is still helpful in terms of Pt replacement and cost reduction.  相似文献   

9.
Oxygen Reduction Reactions (ORR) are one of the main factors of major potential loss in low temperature fuel cells, such as microbial fuel cells and proton exchange membrane fuel cells. Various studies in the past decade have focused on determining a method to reduce the over potential of ORR and to replace the conventional costly Pt catalyst in both types of fuel cells. This review outlines important classes of abiotic catalysts and biocatalysts as electrochemical oxygen reduction reaction catalysts in microbial fuel cells. It was shown that manganese oxide and metal macrocycle compounds are good candidates for Pt catalyst replacements due to their high catalytic activity. Moreover, nitrogen doped nanocarbon material and electroconductive polymers are proven to have electrocatalytic activity, but further optimization is required if they are to replace Pt catalysts. A more interesting alternative is the use of bacteria as a biocatalyst in biocathodes, where the ORR is facilitated by bacterial metabolism within the biofilm formed on the cathode. More fundamental work is needed to understand the factors affecting the performance of the biocathode in order to improve the performance of the microbial fuel cells.  相似文献   

10.
    
One of the critical obstacles for commercialization of solid oxide fuel cells (SOFCs) technology is to develop efficient interfaces between cathode and electrolyte that enable high activity toward oxygen reduction reaction (ORR) while maintain long-term durability. Here, we report a cost-effective spray-coating process that applied in the building of an ORR active and durable cathode/electrolyte interface. When tested at 750 °C, such spray-coated cathodes show a typical interfacial polarization resistance of ~0.059 Ωcm2, much lower than that of ~0.10 Ωcm2 for screen-printed cathodes. Detailed distribution of relaxation time analyses of the impedance spectra over time indicates that the capability of mass transfer and surface exchange process in the spray-coated cathode/electrolyte interface has been enhanced and maintained in the testing periods of ~100 h. As a result, a Ni-based anode supported cell with thin electrolyte and spray-coated cathodes shows an excellent peak power density of 1.012 Wcm−2, much higher than that of 0.712 Wcm−2 for cells with screen-printed cathodes, when tested at 750 °C using wet H2 as fuel and ambient air as oxidant. It is demonstrated that ORR activity and durability of the SOFC cathodes can be dramatically enhanced via a cost-effective spray-coating process.  相似文献   

11.
    
In this study, a cathode catalyst for microbial fuel cells (MFCs) was successfully prepared by a simple step-by-step hydrothermal method. Graphene oxide (GO) and layered double hydroxide (LDH) composite substrate and three-dimensional covalent organic framework materials (COF-300) grown vertically on the surface were observed. (003), (006), (012), (018), (110) were the obvious crystal plane of the composite COF-300@NiAl-LDH/GO. C, O, N, Ni, Na, Al and other elements existed on the surface of the composite. The maximum power density produced by COF-300@NiAl-LDH/GO-MFC was 481.69 mW/m2, which was 1.22 times of Ti3AlC2/NiCoAl-LDH-MFC (393.82 mW/m2) and 2.21 times of Ti3AlC2-MFC (217.73 mW/m2). The maximum voltage of COF-300@NiAl-LDH/GO-MFC was 518 mV and it could remain stable within 8 days. GO was used as the substrate to improve the conductivity; LDH was used to enhance the catalytic activity and electron transfer rate; The three-dimensional bulk COF-300 attached to the surface enhanced the surface area and catalytic properties; The above jointly promoted oxygen reduction reaction of cathode, so as to improve MFC performances.  相似文献   

12.
High-performance, low-cost, and robust oxygen reduction reaction (ORR) catalysts have played a very crucial role in the development of microbial fuel cells (MFCs). Herein, A novel in-situ Co3O4 nanoparticles (NPs) modified nitrogen-doped graphene with three-dimensional porous structure (3D GN-Co3O4) has been successfully synthesized and employed as an efficient ORR catalyst in MFCs. Benefiting from 3D porous architecture feature, highly intrinsic conductivity and synergistic effect between nitrogen-doped graphene and Co3O4 NPs, the 3D GN-Co3O4 as a cathode catalyst in alkaline condition realizes significantly enhanced electrochemical performance and outstanding cycling stability. Furthermore, the self-assembly of MFCs based on the 3D GN-Co3O4 cathode offers a high power density of 578 ± 10 mW m?2, which is even comparable to the commercial Pt/C.  相似文献   

13.
Perovskite oxides Sr0.9K0.1FexCo1-xO3-δ (SKFCx, x = 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) are investigated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) on Sm0.2Ce0.8O1.9 (SDC) electrolyte. The cubic phase of the SKFCx oxides is demonstrated by x-ray diffraction. The SKFCx cathode shows good compatibility with the SDC electrolyte up to 900 °C. Among the investigated compositions, SKFC0.1 displays the highest electrical conductivity of 443–146 S·cm?1 from 350 °C to 800 °C in flow air. The area specific resistances (ASRs) of the SKFCx (x = 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) cathodes are 0.047, 0.058, 0.066, 0.101, 0.155 and 0.175 Ω cm2 at 650 °C in air on an SDC electrolyte. Among the five tested cathodes, SKFC0.1 exhibits the lowest area specific resistances between 550 °C and 750 °C, when tested on its symmetric cell configuration of cathode|SDC|cathode. The thermally stabilized cubic perovskite structure of the SKFC0.1 powder is demonstrated by high-temperature XRD. The average linear thermal expansion coefficient αL of SKFC0.1 is 18.9×10?6 K?1. A peak power density of 1643 mW·cm?2 is achieved on SKFC0.1|SDC|Ni-SDC anode supported fuel cell at 650 °C. These features, and excellent electrocatalytic activity and good stability, indicate the potential of alkaline metal doped strontium cobalt ferrite perovskites are promising cathode materials for IT-SOFCs.  相似文献   

14.
    
While (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) has been one of the most investigated materials for a long time, its relatively insufficient oxygen reduction reaction (ORR) activity and inherent performance degradation are still two main obstacles to its massive application on oxygen-ion conducting solid oxide fuel cell (SOFC). To solve those issues, a composite of Pr6O11 and NiO has been deposited on LSCF successfully via a facile infiltration method in this study. The modified LSCF cathode exhibits ∼30% lower polarization resistance than LSCF. The excellent performance promotion may be due to the synergistic effect of Pr6O11 and NiO on the LSCF surface. The distribution of relaxation time (DRT) analyses of electrochemical impedance spectra (EIS) in different oxygen partial pressure and long-term operation indicate that the performance enhancement is caused by the facilitated oxygen surface adsorption-dissociation process and suppression of Sr segregation on modified LSCF cathode, thus achieving a higher peak power density of 1.40 W cm−2 at 800 °C and better long-term operation stability of only 3% voltage decline rate after 80 h operation. These results indicate that Pr6O11 and NiO composite modification is a promising method for improving the electrochemical performance of LSCF.  相似文献   

15.
    
This study assessed the feasibility of vanadium pentoxide (V2O5) as a novel cathode catalyst material in air-cathode single chamber microbial fuel cells (SCMFCs). The V2O5 nanorod catalyst was synthesized using a hydrothermal method. MFCs with different cathode catalyst loadings were studied. Cyclic voltammetry (CV) was used to examine the electrochemical behavior of the catalysts in the MFCs. The V2O5 cathode catalyst constructed with a double loading MFC exhibited the highest maximum power density of 1073 ± 18 mW m−2 (OCP; 691±4 mV) compared with 447 ± 12 mW m−2 (OCP; 594 ± 5 mV) and 936 ± 15 mW m−2 (OCP; 647±5 mV) for the single loading MFC and triple loading MFC, respectively. The power density of MFC with double loaded V2O5 is comparable to the traditional Pt/C cathode (2067 ± 25 mW m−2, OCP; 821 ± 4 mV), which covers up to 55% of the performance of Pt/C. This finding highlights the potential of the V2O5 cathode as an inexpensive catalyst material for MFCs that may have commercial applications.  相似文献   

16.
An innovative membrane-electrode assembly, based on a polyoxometalate (POM)-modified low-Pt loading cathode and a sulphated titania (S-TiO2)-doped Nafion membrane, is evaluated in a polymer electrolyte membrane fuel cell. The modification of fuel cell cathode with Cs3HPMo11VO40 polyoxometalate is performed to enhance particles dispersion and increase active area, allowing low Pt loading while maintaining performance. The POM's high surface acidity favors kinetics of oxygen reduction reaction. The mesoporous features of POM allow the embedding of Pt inside the micro-mesopores, avoiding the Pt aggregation during fuel cell operation and delaying the aging process, with consequent increase of lifetime. On the other hands, commercial Nafion is modified with superacidic sulphated titanium oxide nanoparticles, allowing operation at low relative humidity and controlled polarization of the MEA. Further MEAs, formed by unmodified Nafion membrane and the POM-based cathode, as well as sulphated titanium-added Nafion and commercial Pt-based electrodes, are used as terms of comparison. The cell performances are studied by polarization curves, electrochemical impedance spectroscopy, Tafel plot analysis and high frequency resistance measurements. The dependence of cell performances on relative humidity is also studied. The catalytic and transport properties are improved using the coupled system, despite the reduced Pt loading, thanks to rich proton environment provided by cathode and membrane.  相似文献   

17.
A-site Ba-deficiency layered perovskite oxides, EuBa1?xCo2O6?δ (EB1?xCO, x = 0.02 and 0.04), have been synthesized by a citric acid-ethylene diamine tetraacetic acid complexation sol-gel method, and evaluated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Room temperature powder X-ray diffraction patterns indicate that the EB1?xCO oxides crystallize in an orthorhombic symmetry with space group Pmmm. Among all of components, EB0.98CO exhibits a good chemical compatibility with Ce0.9Gd0.1O1.95 (CGO) electrolyte, as evidenced by phase analysis of mixed EB0.98CO-CGO after calcining at 950 °C for 12 h in air. Thermal expansion analysis gives an average thermal expansion coefficient of 16.7 × 10?6 K?1 for EB0.98CO. Thermogravimetric measurement confirms the high oxygen nonstoichiometric characteristic of EB0.98CO at elevated temperatures. The electrical conductivity values of EB0.98CO exceed 300 S cm?1 in the temperature range of 100–750 °C. When tested as cathode in IT-SOFCs, the polarization resistance of 0.107 Ω cm2 and the overpotential of 10 mV at current density of 77 mA cm?2 are achieved in the EB0.98CO cathode at 700 °C in air. The EB0.98CO cathode-based anode-supported single cell delivers the maximum power density of 505 mW cm?2 at 700 °C. Finally the rate-limiting steps for oxygen reduction reaction at the EB0.98CO cathode interface are determined to be the charge transfer reaction and gas-phase diffusion process.  相似文献   

18.
Nitrogen-doped carbon nanotubes (NCNTs) were prepared using a floating catalyst chemical vapour deposition method. The multiwalled NCNT contains 8.4 at% nitrogen and has a dimension of 100 nm in the diameter and 10-20 nm in the wall thickness. The catalytic activity and durability of the NCNTs towards oxygen reduction reaction (ORR) were evaluated by cyclic voltammetry (CV) and rotating ring-disk electrode (RRDE) techniques in KOH solution. In addition, the effects of KOH concentration on several ORR performance indicators of the NCNT catalyst, such as the number of electrons transferred, the diffusion-limiting current density, the onset and half-wave potentials, were also examined in electrolytes of various KOH concentrations, ranging from 0.1 to 12 M. Experimental results show that NCNTs exhibited comparable activity for ORR in alkaline electrolyte as compared with commercially available Pt/C catalyst, and much higher activity than commercial Ag/C catalysts. In addition, the NCNTs showed good stability from the potential cycling test, and the concentration of KOH had significant impact on the ORR performance indicators of the NCNT catalysts.  相似文献   

19.
    
The performance of microbial fuel cells (MFCs) consisting of exfoliated porous graphitic carbon nitride (ep-GCN) and its composite with acetylene black (AB) as cathode catalyst is evaluated. The cyclic voltammetry and electrochemical impedance spectroscopy of composite ep-GCN-AB indicated excellent oxygen reduction reaction activity and comparable charge transfer resistance with respect to Pt–C. The absence of X-ray diffraction peak at 2θ = 13° (corresponding to stacked structure of bulk GCN) indicated reduction in thickness. Four MFCs were operated with simulated wastewater with chemical oxygen demand (COD) of 3000 mg L−1. The maximum power densities of MFC-GAB (14.74 ± 0.17 W m−3), MFC-PAB (15.68 ± 0.58 W m−3) and MFC-G (12.47 ± 0.30 W m−3) using ep-GCN-AB, Pt–C and ep-GCN electrocatalyst, respectively, were 2.6, 2.7 and 2.2 times higher than MFC-AB operated with only acetylene black coated cathode. The investigation demonstrates that ep-GCN and its composites can be utilized as excellent cathode catalysts in MFCs at 20 folds lesser cost than Pt–C.  相似文献   

20.
    
Exploring advanced electrode materials with high electrochemical performance and sufficient durability is crucial to the commercialization of solid oxide fuel cells (SOFCs). Herein, a Ruddlesden-Popper Sr2·9La0·1Fe1·9Ni0·1O7?δ (SLFN) oxide is systematically evaluated as efficient oxygen electrode material. La and Ni co-doping strategy demonstrates improved oxygen desorption ability and promoted electrochemical activity of pristine Sr3Fe2O7?δ (SF) toward oxygen reduction react (ORR). Further, the ORR process of the SLFN electrode is probed by electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) technique. The button cell with the SLFN cathode delivers a peak power density of 1.01 W cm?2 at 700 °C, along with desirable stability over a period of 60 h. This study offers a feasible strategy for developing Ruddlesden-Popper type cathode candidates for SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号