首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite that diverse carbon materials have been designed as framework to anchor molybdenum carbide to efficiently improve catalytic performance for hydrogen evolution reaction (HER), simply and uniformly hybridizing Mo and carbon source to form well-defined heteroatom-doped Mo2C/carbon nanostructure using suitable precursors to expose the more active sites and optimize electron structure Mo2C is still great challenge. Herein, we design and fabricate N, P-co-doped molybdenum carbide/porous carbon hybrid rough microspheres by a simple hydrothermal and followed annealing method using red jujube and phosphomolybdic acid as carbon and Mo source, respectively. Benefiting from carbon framework derived from red jujube inhibiting the aggregation of Mo2C nanoparticles, N, P co-doping changing the electro-structure of the adjacent Mo and C atoms, and rough micro-spherical structure increasing the electrolyte-active materials contact surface, the resulting material exhibits high electrocatalytic performance with a low overpotential of 103 and 80 mV at current densities of 10 mA cm−2, a small Tafel slope of 57 and 46 mV dec−1, respectively, in acidic and alkaline electrolyte, and excellent stability. The convenient resource, facile preparation and high performance make this material showing great potential in cost effective hydrogen production.  相似文献   

2.
Based on the ever-growing interest of heteroatoms (e.g., P, N, S, transition metals) doping into molybdenum carbide and graphene for electrochemical reactions, herein, a ternary phosphomolybdic acid-polyethyleneimine/graphene oxide nanocomposite as a suitable precursor was developed to not only uniformly hybridize molybdenum and carbon source to perform the controllable in situ growth of well-defined molybdenum carbide nanostructure on graphene by annealing, but also synchronously dope N and P atoms into molybdenum carbide crystal lattice and graphene. The as-prepared hybrid showed remarkable electrocatalytic activity and high stability for hydrogen evolution reaction in basic media, due to the following favorable features, i.e. a large accessible active sites afforded by the ultrafine molybdenum carbide, the heteroatoms doped, the regulated electronic structure, the balanced thermodynamics between hydrogen adsorption and desorption, the accelerated charge/mass transfer ability by the ultrathin and defective carbon layer, and the protection of molybdenum carbide by carbon layer. As a result, it only needed a small overpotential of 47 mV to drive 10 mA cm?2 and a low onset potential of 10 mV, as well as a small Tafel slope of 56.8 mV·dec?1, thus suggesting its promising potential for hydrogen evolution electrocatalyst.  相似文献   

3.
A molten salt strategy was proposed to prepare a series of electrocatalysts for hydrogen evolution reaction (HER) with salts as templates, which consisted of Co9S8 nanoparticles (NPs) and N, S co-doped mesoporous carbons. The porosities, heteroatoms contents, and crystalline structures of the final electrocatalysts were determined by the types of salts and the calcining temperatures. When KCl/NaCl, KCl/LiCl, and NaCl/CaCl2 were adopted as the molten salts, Co9S8 NPs embedded, N, S co-doped carbons were obtained. However, when CaCl2 and ZnCl2 were used as the molten salts, Co9S8 could not be synthesized. The characterization results exhibited that alkali metal atoms could be introduced in the lattices of Co9S8. The combination of experimental and theoretical results revealed that Na and K atoms doping improved the electrocatalytic performance for HER. GTCo900-KCl/NaCl possessed the best HER activity, delivering a current density of 10 mA cm−2 at 54 mV in acidic media, 142 mV in neutral media, and 103 mV in alkaline media.  相似文献   

4.
In this study, Zn, S, and P co-doped nitrogen N-enriched carbon (ZnSP/NC) was successfully fabricated as an efficient electrocatalyst for the hydrogen evolution reaction (HER) process via pyrolysis, sulfurization, and phosphorization. The metal Zn derived from zeolitic imidazolate framework-8 (ZIF-8) was combined with the S element to form ZnS nanoparticles, and then embedded in N-enriched carbon during the sulfurization process. Following this, the P element was well-dispersed in the catalyst via phosphorization. It was found that ZnSP/NC exhibits excellent electrocatalytic activity when used as a catalyst for the HER process. ZnSP/NC, with an overpotential of 171 mV and a Tafel slope of 54.78 mV dec−1, demonstrates superior electrocatalytic activity as compared to Zn/NC (277 mV, 92.34 mV dec−1) and ZnS/NC (241 mV, 76.41 mV dec−1). During the HER process, ZnS and P serve as active sites, while the N-enriched carbon provides reliable electronic transmission. The synergistic effects among the ZnS, P, and N-enriched carbon result in an excellent electrocatalytic activity of ZnSP/NC for the HER process.  相似文献   

5.
Evidence shows that embedding metal-based hybrid into carbon matrix is an up-and-coming method to improve the efficiency and decrease the cost of electrocatalysts. Herein, by using a metal-organic framework (MOF) with 4,4-bipyridine and 2,5-thiophenedicarboxylic acid as a precursor, a CoP/Co3S4 hybrid embedded into N, S, O-doped carbon sheets (CoP/Co3S4@NSOC) was constructed through pyrolysis and phosphorization processes. The lamellar morphology, hetero-atom doping, and graphite carbon were favorable for fast electron and mass transfer. Moreover, the strong intrinsic activities of CoP and Co3S4 promoted electrocatalytic performance. In the electrochemical experiments, CoP/Co3S4@NSOC showed the lowest overpotential of 132 mV@10 mA cm?2 for hydrogen evolution reaction (HER) among all the precursors. In addition, the electrocatalytic activity and structure of CoP/Co3S4@NSOC exhibited long-term stability over 60 h. The present work provides a feasible strategy for the construction of robust MOF-derived electrocatalysts.  相似文献   

6.
As a new generation of non-precious metal catalysts, nickel phosphide is regarded as an ideal substitute for precious metal platinum in electrochemical hydrogen evolution. Here, a hydrogen evolution reaction (HER) electrocatalyst is developed by in situ growth of Ni2P/Ni5P4 heterostructures on porous N decorated rGO foam (named Ni2P/Ni5P4/N-rGO). The porous rGO foam structure provides a larger surface area and abundant active sites. The Ni2P/Ni5P4 nanoparticles with heterostructures are uniformly distributed on the rGO sheet, which enhance the charge transfer ability. The decorating of N element also correspondingly improves the HER performance. The as-prepared Ni2P/Ni5P4/N-rGO exhibits excellent HER performance in alkaline medium. When the current density is 10 mA cm?2, the overpotential is only 22 mV. No obvious loss of HER activity after 2000 cyclic voltammetry indicates that the composite has excellent stability. This work presents a valuable route for fabricating inexpensive and high-performance catalysts for electrocatalysis.  相似文献   

7.
In photocatalytic splitting water for hydrogen evolution, narrow light response range and fast electron-hole recombination of g-C3N4 (CN) limit its photocatalytic activity. In this article, the N, S co-doped carbon dots (NSCDs) with up-converted property were loaded on CN nanosheets by thermal polymerization to obtain NSCDs/CN composite catalyst. Characterization, electrochemical researches and hydrogen evolution tests suggest that the photocatalytic activity of CN is greatly promoted by the introduction of NSCDs. Under visible and near-infrared irradiation, the hydrogen evolution rate is 5033.1 μmol g?1 h?1 of NSCDs-5/CN, which is 8.3 times higher than that of CN. The performance improvement is mainly attributed to the increased specific surface area, elevated hydrophilic surface, increased light absorption and suppressed carrier recombination of CN after the introduction of NSCDs. This work unveils the mechanism of the hydrogen evolution activity improvement in NSCDs-5/CN, and also offers a new prospect in the design of high-performance CN-based photocatalysts.  相似文献   

8.
We developed a salt-template strategy to prepare MoS2 nanoparticles (NPs) embedded, N, S co-doped carbons via the solid-state process. The addition of the inorganic salt played two main roles in the synthetic proceeding. First, the salts could be utilized as the templates to produce the mesopores, which could be removed by simple washing process. Second, the salts could promote the formation of MoS2 NPs. The as-received electrocatalyst, K-G4.0T2.0Mo1.0, possessed high BET surface area of 446 m2 g?1, in addition to high double layer capacitance of 24.5 mF cm?2 in the alkaline media. When evaluated as the electrocatalyst for hydrogen evolution reaction (HER), K-G4.0T2.0Mo1.0 demonstrated excellent performance in the alkaline and neutral medias. In details, K-G4.0T2.0Mo1.0 showed a low overpotential of 173 and 358 mV to afford 10 mA cm?2 under alkaline and neutral conditions, respectively, as well as outstanding durability.  相似文献   

9.
Banana peels-derived porous carbon has been synthesized with urea and potassium carbonate mixture and annealed at 700 ? C to decrease the size of carbon particles. The as-prepared carbon is composited with Zn(O,S) to form Zn(O,S)/C with different carbon contents of 1, 2.5, and 5 wt%. All the nanocomposites are identified with XRD, SEM, Raman, TEM, XPS, FTIR, and EPR analyses. The optical and electrochemical properties are also analyzed with DRS, Tauc plot, PL, EIS, TPC, MS, and CV measurements. Furthermore, the amounts of generated hydrogen gas are evaluated in the presence of Zn(O,S), ZC-1, ZC-2.5, and ZC-5 nanocomposites under simulated solar light irradiation. ZC-2.5 with an appropriate amount of banana peels carbon generates 9232 μmol/g in a 5-h photocatalytic reaction. The HER rate is enhanced by 1.7 times compared to pristine Zn(O,S). Incorporating low-cost banana peels carbon improves the separation between photogenerated electron and hole as the active site of carbon in ZC-2.5 attract the electron for hydrogen reduction. In addition, the generated Vo sites on Zn(O,S) during the photocatalytic reaction also increase the water and alcohol oxidation to scavenger the generated holes. This work designed a simple catalytic system with low-cost and environmentally-friendly material to provide an alternative energy source by harvesting solar light energy.  相似文献   

10.
The strong metal-support interactions between metal and its support have been considered as an effective way to improve the electrocatalytic activity in heterogeneous catalysis, which can modulate metal d-band's energy level and, consequently, affect the adsorption/desorption of the intermediates on the metal nanoparticle's surface. In this paper, we use a self-assembly strategy for construction nano-sized Ru nanoparticles (NPs) anchored on B, N co-doping carbon nanorod carrier (Ru/BCN) as HER catalyst by using unique boron cluster-organic framework as precursor and self-sacrificing templates. This supramolecular framework forming with cucurbit [6]uril as the host and closo-[B12H12]2- as the guest can feature unique hexagonal nanorod morphology to confine the Ru NPs into framework through weak reductivity of closo-[B12H12]2-. After pyrolysis, the strong metal-support interactions between B, N co-doping carbon support (BCN) and Ru NPs have been found due to the synergistic coupling effect of co-dopants B and N, which can increase electron transfer between the metal nanoparticle and support. The overpotentials of 33 mV and 40 mV are required for as-prepared catalyst Ru/BCN to achieve a current density of 10 mA cm?2 in alkaline and acidic conditions, respectively, which are approximately one third of those of Ru/CN. These findings demonstrate that our synthetic way offers a potential route for fabricating co-doping carbon with B and N atoms to support Ru NPs with enhanced HER performance in pH-independent conditions.  相似文献   

11.
To achieve high activity and stability for both hydrogen and oxygen evolution reactions through the non-precious-metal based electrocatalysts is still facing the great challenge. Herein, we demonstrate a facile strategy to prepare CoP nanoparticles (NPs) loaded on N, P dual-doped carbon (NPC) electrocatalysts with high concentration N and P dopants through a pyrolysis-deposition-phosphidation process. The great bifunctional electrocatalytic activity for both HER (the overpotential of 98 mV and 86 mV at 10 mA cm−2 in both 0.5 M H2SO4 and 1 M KOH electrolytes, respectively) and OER (the overpotential of 300 mV at 10  mA cm−2 in 1 M KOH electrolyte) were achieved. When CoP@NPC hybrid was used as two electrodes in the 1 M KOH electrolyte system for overall water splitting, the needed cell potential for achieving the current density of 10 mA cm−2 is 1.6 V, and it also showed superior stability for HER and OER after 10 h’ test with almost negligible decay. Experimental results revealed that the P atoms in CoP were the active sites for HER and the CoP@NPC hybrid showed excellent bifunctional electrocatalytic properties due to the synergistic effects between the high catalytic activity of CoP NPs and NPC, in which the doping of N and P in carbon led to a stronger polarization between Co and P in CoP, promoting the charge transfer from Co to P in CoP, enhancing the catalytic activity of P sites and Co sites in CoP for HER and OER, respectively. Specifically, the improvements could result from the changed charge state, the increased active specific surface area, and the facilitated reaction kinetics by N, P co-doping and admixture. This work provides a high-efficient, low-cost and stable electrocatalyst for overall water splitting, and throws light on rational designing high performance electrocatalysts.  相似文献   

12.
Exploring multifunctional electrocatalysts is crucial for the development of energy conversion and storage equipments, such as fuel cells, water splitting devices and zinc-air batteries. Herein, we provide a rational design whereby the cobalt phosphide particles are introduced into molybdenum sulfide nanosheets to form a heterostructure (MoS2||CoP) through the ultrasonic method and calcination. Subsequently, N, P-doped carbon (NPC) is obtained synchronously. The as-prepared MoS2||CoP/NPC demonstrates highly effective multifunctional catalytic performance for oxygen evolution and hydrogen evolution reaction at lower overpotential, as well as oxygen reduction reaction at high half-wave potential. What this reveals is higher power density and superior stability in zinc-air battery. The excellent electrocatalytic activity of MoS2||CoP/NPC may be attributed to the presence of the MoS2||CoP heterostructure, as well as N, P-doped carbon coupled with a high percentage of pyridinic-N. This work proposes a novel and facile strategy to prepare the heterostructure compound and serves as a good reference for constructing efficient and low-cost electrocatalysts.  相似文献   

13.
Developing low-cost electrocatalysts with excellent catalystic activity and superior stability for hydrogen evolution reaction (HER) is still a big challenge. In this paper, we adopted zeolitic imidazolate zinc framework (ZIF-8) as precursor to fabricate Zn, Mn, S and P co-loaded on N doped carbon (ZnMnSP/NDC) via pyrolysis, adsorption, sulphurization and phosphorization processes and investigated its catalytic activity for HER. After being carefully researched, the loading of Mn, S and P can obviously improve the catalytic activity of the catalyst for HER. Mn and P elements are loaded on porous carbon homogeneously. Zn can react with S to form ZnS. More interestingly, the loading of S element can highly improve the graphitic degree of porous carbon. Furthermore, ZnMnSP/NDC exhibits excellent long-term stability for HER in the alkaline solution. The excellent electrocatalytic performance of ZnMnSP/NDC may be attributed to the high loading of Mn, S, P element and the unique nanoparticle-embedded porous carbon structure. This work provides a valuable way to fabricate non-precious elements co-loaded N doped carbon with excellent catalytic performance for HER.  相似文献   

14.
The practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution is strictly hindered by the low surface area, poor light harvesting capability and detrimental recombination of photoexcited charge carriers. Herein, using melamine as precursor and metal hydride (i.e., CaH2) as active agent, we facilely incorporate various types of defects (i.e., nitrogen (N) vacancies (VN), cyano groups (CN) and surface absorbed oxygen species(Oabs)) into g-C3N4 within a single step. The as-prepared material (denoted as MM-H) exhibits narrowed bandgap, promoted photoexcited electron-hole separation rate and facilitated charge transfer kinetics with enlarged BET surface area and massive porosity. As a result, a prominently enhanced photocatalytic H2 productivity efficiency (1305.9 μmol h−1g−1) is shown on MM-H. This performance is better than that of g-C3N4 with CaH2 post-treatment (617.3 μmol h−1g−1) and raw bulk-C3N4 (178.2 μmol h−1g−1). This work opens up a new dimension for designing high performance g–C3N4–based catalysts targeting various photocatalytic processes.  相似文献   

15.
At present, a low-cost and efficient electrocatalyst is vital to conquering the sluggish oxygen reduction reaction (ORR) in fuel cells. In particular, N and S dual heteroatom doped mesoporous carbon (NSMC) catalysts are believed to be one of the best ORR catalyst options due to the distribution of nitrogen, sulfur sites. In this work, for NSMC synthesis we employed 2D Santa barbara amorphous (SBA-15) silica as support material and L-cysteine as N and S dual precursor. The optimal loading of NSMC-0.4, reveals the high concentration of defect sites (ID/IG = 0.99), pyridinic (21.41 at. %), graphitic-N (50.27 at. %), thiophene-S (77.16 at. %) sites on MC surface resulting in an improved ORR performance. The NSMC-0.4 showed more positive onset potential of 0.78 V vs. RHE, half-wave potential of 0.68 V, current density of 2.8 mA/cm2, peroxide production of 81%, followed by two-electron reduction process and lower Rct of 10 Ω/cm2 in an alkaline electrolyte solution. However, NSMC-0.6 demonstrated the higher amount of peroxide selectivity (150%) due to the presence of a large quantity of pyrrolic-N sites. In addition, our work provide an excellent guide for the synthesis and design of NSMC for efficient peroxide production via an electrochemical synthesis route.  相似文献   

16.
Recently, to improve the catalytic activity of oxygen evolution reaction (OER) electrocatalysts, some design strategies, such as the decrease of the catalyst particle size, the formation of the porous structure and the couple of carbon-based materials, are receiving increased attention in energy-related systems. Herein, based on metal organic framework (MOF), we develop an effective strategy to synthesize Ni nanoparticles embedded in N doped carbon nanotubes (Ni NPs@N-CNTs) catalyst. In consequence, the Ni NPs@N-CNTs integrates the advantageous features of NPs and N-CNTs towards OER, such as more catalytic sites, large surface area, pore-rich structure and good electrical conductivity. Benefiting from the favorable features, the Ni NPs@N-CNTs exhibits a better OER performance than commercial RuO2 in alkaline medium, which includes a lower onset potential (1.49 V), a smaller Tafel slope (106 mV dec?1). The present work opens a new window for the construction of the coupling materials between NPs and carbon-based materials to increase the electrocatalytic activity of transition metal catalysts.  相似文献   

17.
Water electrolysis is the most clean and high-efficiency technology for production of hydrogen, an ultimate clean energy in future. Highly efficient non-noble electrocatalysts for hydrogen evolution reaction (HER) are desirable for large scale production of hydrogen by water electrolysis. Especially, exposing as many active sites as possible is a vital way to improve activities of the catalysts. Herein, a series of new hydrangea like composite catalysts of ultrathin Mo2S3 nanosheets assembled uprightly and interlacedly on N, S-dual-doped graphitic biocarbon spheres were facilely prepared. The unique structure endowed the catalysts highly exposed edge active sites and prominently high activities for HER. Especially, the optimized catalyst Mo2S3/NSCS-50 exhibited as low as 106 mV of overpotential at 10 mA/cm2 (denoted as ?10). The catalyst also showed low Tafel slope of 53 mV/dec, low electron transfer resistance of 34 Ω and high stability evidenced by the result that the current density only attenuated 11.7% after 10 h i-t test. The catalyst has shown broad prospect for commercial application in water electrolysis.  相似文献   

18.
Exploration of multifunctional non-precious metal catalysts towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for many clean energy technologies. Here, two trifunctional catalysts based on M (Co, Ni), N and S tridoped carbon nanoplates (Co/N/S-CNPs and Ni/N/S-CNPs) are reported. Due to the relatively higher catalytic site content, graphitization degree and smaller charge-transfer resistance, the Co/N/S-CNPs catalyst shows higher activity and stability for ORR (onset potential of 0.99 V and half-wave potential of 0.87 V vs. RHE (reversible hydrogen electrode)), OER (overpotential at 10 mA cm?2 of 0.37 V) and HER than the Ni/N/S-CNPs catalyst. Furthermore, when constructed with the Co/N/S-CNPs and commercial 20 wt% Pt/C + Ir/C cathodes, respectively, Zn-air battery (ZnAB) based on the Co/N/S-CNPs cathode displays better performance, including a higher power density of 96.0 mW cm?2 and cycling stability at 5 mA cm?2. In addition, an alkaline electrolyzer assembled with the Co/N/S-CNPs catalyst as a bifunctional catalyst can reach 10 mA cm?2 at 1.65 V for overall water splitting and maintain excellent stability even after cycling for 12 h. The present work proves the potential of the Co/N/S-CNPs catalyst for many clean energy devices.  相似文献   

19.
The existence of the heterovalent metal states and S doping into Ce–Mo bimetallic oxide improve the photocatalytic activity by generating oxygen vacancy and narrowing the bandgap for suitable water splitting. Spherical and plate likes heterostructure Mo(S,O)/(Ce,Mo)(S,O) sulfo-oxide catalysts with heterovalent metal states and oxygen vacancy defects were synthesized by co-precipitation method for photocatalytic hydrogen evolution reaction. Catalyst labeled as 1-CeMoOS with more oxygen vacancies and high Ce3+/(Ce3++Ce4+) ratio evolved 405.18 μmol/h H2 and achieved AQE of 13.72%, whereas reduced 76.43% 4-NP and 91.52% RhB by in-situ generated protons. S doping, oxygen vacancy creation, Ce and Mo heterovalent states have narrowed the bandgap by substituting oxygen with sulfur, promoted the photogenerated charge carriers' effective separation, and prolonged the lifetime of electrons. The oxygen vacancy formation with a subsequently partial Ce4+-to-Ce3+ conversion achieves CeMoOS catalysts with excellent PHER and provides a promising way to improve photocatalysts' visible light PHER activity.  相似文献   

20.
Iron, nitrogen, sulfur co-doped Fe/N/C catalyst (poly-AT/Me–Fe/N/C) with the structure of graphene-like nanosheets around carbon nanoparticles were successfully synthesized for oxygen reduction reaction (ORR). 2-Aminothiazole and melamine were utilized as the dual-nitrogen-source. The results showed that 2-Aminothiazole, as the nitrogen and sulfur source, contributed to in-situ synthesizing graphene-like nanosheets around KJ-600 carbon nanoparticles with high specific surface area (1098 m2/g). Proper method to introduce melamine during the synthesis could increase the content of pyridinic-N and Fe-Nx moieties in the catalyst without changing the morphology. Due to the high surface area and high content of pyridinic-N and Fe-Nx moieties, the obtained poly-AT/Me–Fe/N/C catalyst exhibited high electrochemical activity and stability with the half-wave potential of 0.84 V (RHE) in 0.1 M NaOH solution, which is merely 17 mV lower than commercial Pt/C. The electron transfer number was 3.83, indicating a nearly 4e? transfer for the ORR with low HO2? yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号