首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Developing non-precious metal catalysts with high activity is crucial for the extensive applications of the proton exchange membrane fuel cell (PEMFC). Herein, we have prepared cobalt–copper–boron (Co–Cu–B) nanoparticles by a modified chemical reduction route where Ni foam was used as an initiation medium for the efficient hydrolysis of alkaline sodium borohydride (NaBH4) solution. The influence of the synthetic condition (such as Cu2+ concentration, pH value and the concentration of reducing agent) on the catalytic activities has been explored. The catalytic hydrolytic tests reveal that the as-obtained Co–Cu–B nanoparticles with hollow spherical structure shows highly efficient catalytic activity, affording a hydrogen generation rate (HGR) of 3554.2 mLH2·gcatal.1·min1 under room temperature, and a lower activation energy of 52.0 kJ· mol−1, which overtakes the activities of previous reported most non-precious metal catalysts, even some precious catalysts. The kinetics results show that the catalytic hydrolysis process of alkaline NaBH4 solution is a zero-order reaction in view of the amount of Co–Cu–B catalyst, meaning that the reaction rate is independent of the catalyst amount. This study offers us a promising non-precious metal catalyst toward dehydrogenation from the hydrolysis of NaBH4 to further speed up the application steps.  相似文献   

2.
This paper reports on the use of Co supported catalyst for the hydrolysis of NaBH4. Various materials with different acid/base surface properties have been chosen as supports (hydrotalcites, KF/Al2O3, heteropolyanions). The supports and the Co-containing catalysts were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, nitrogen adsorption. The NaBH4 hydrolysis reaction was studied in a liquid phase calorimeter coupled with a gas counter in order to follow at the same time the kinetics and the heat of reaction. Co supported on heteropolyanions showed great results in terms of reaction rate. Cobalt dispersed on heteropolyanions is a real promising catalytic system for the development of hydrogen generation in PEM fuel cells for portable devices.  相似文献   

3.
Experimental results regarding long-term stability of the alkaline-water borohydride solutions for hydrogen generation are presented. The influence of the concentration of sodium borohydride and sodium hydroxide on the rate of borohydride hydrolysis is analyzed at various temperatures, such as 25 °C, 40 °C, and 80 °C, and various concentrations of NaOH. The rate of hydrolysis decreases with the increase of the water to sodium borohydride mole ratio. For diluted solutions at H2O/NaBH4 >30, the rate of hydrolysis and hydrogen generation at a given temperature remains constant. At room temperature in 1.0 N NaOH, the degree of hydrolysis is 0.01% NaBH4/h that meets the stability requirements for the borohydride solutions during the long-term storage.  相似文献   

4.
    
In this study, nickel, nickel-chromium alloy, and nickel-vanadium alloy were coated to form a thin film on the slides prepared by magnetron sputtering process, which were used as a catalyst for the hydrolysis of alkaline sodium borohydride. Factors, such as the temperature of the solution, amount of the catalyst, initial pH of the solution and the performance of these catalysts on hydrogen generation rate were investigated using response surface methodology. Moreover, the catalysts were characterized using XRD and FE-SEM/EDS analyses. Utilizing the obtained optimum conditions of the response surface methodology estimation, the maximum hydrogen generation rate was 35,071 mL min−1 gNiV−1 from NiV catalyst at 60 °C, pH 6, and 1.75 g catalyst conditions. Under the same experiment conditions, the maximum hydrogen generation rates of Ni and NiCr catalyst systems are 28,362 mL min−1 gNi−1, and 30,608 mL min−1 gNiCr−1, respectively.  相似文献   

5.
    
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

6.
    
Carbon nanofibers (CNFs) incorporating NiS nanoparticles (NPs), namely NiS@CNFs were prepared by one-step electrospinning and successfully employed as a catalyst for hydrogen production from hydrolytic dehydrogenation of sodium borohydride (SBH). As-prepared NiS@CNFs, composed of polyacrylonitrile (PAN), nickel acetate, and ammonium sulfide, was calcined at 900 °C in argon atmosphere, and characterized using standard surface science techniques. The combined results revealed the growth of NiS NPs inside the CNFs, hence confirmed the presence of elemental Ni, S, and C. The as-prepared NiS@CNFs catalyst has a significantly higher surface area (650.92 m2/g) than the reported value of 376 m2/g. Importantly, this catalyst exhibited a much higher catalytic performance, for H2 production from SBH, than that of Ni@CNFs, as evidenced by its low activation energy (∼25.11576 kJ/mol) and their Rmax values of 2962 vs. 1770 mL/g·min. Recyclability tests on using NiS@CNFs catalyst showed quantitatively production (∼100% conversion) of H2 from SBH and retained up to 70% of its initial catalytic activity after five successive cycles. The low cost and high catalytic performance of the designed NiS@CNFs catalyst enable facile H2 production from readily available hydrogen storage materials.  相似文献   

7.
Nickel-based bimetallic catalysts were screened using the sodium borohydride NaBH4 hydrolysis and the aqueous hydrazine borane N2H4BH3 dehydrogenation. A total of 22 bimetallic catalysts were synthesized according to an easy process while focusing on metals like Fe, Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt and Au. In the end, the bimetallic candidate Ni87.5Pt12.5 showed to be the most active and the most selective for the dehydrogenation of N2H4BH3. At 70?°C, it is able to decompose N2H4BH3 into 5.8 equivalents of H2+N2 in less than 12?min such as: N2H4BH3?+?3H2O?→?0.95 N2?+?0.1 NH3?+?B(OH)3?+?4.85H2. Durability and stability tests were also performed. In our conditions, Ni87.5Pt12.5 was found to suffer from small loss of performance because of an electronic evolution of the catalytic surface leading to modified sorption properties of the catalytic sites. Our main results are reported and discussed herein.  相似文献   

8.
Magnetic nickel–ruthenium based catalysts on resin beads for hydrogen generation from alkaline NaBH4 solutions were synthesized with combined methods of chemical reduction and electroless deposition. Factors, such as solution temperature, NaBH4 loadings, and NaOH concentration, on performance of these catalysts on hydrogen production from alkaline NaBH4 solutions were investigated. Furthermore, characteristics of these nickel–ruthenium based catalysts were carried out by using various instruments, such as SEM/EDS, XPS, SQUID VSM and BET. These catalysts can be easily recycled from spent NaBH4 solution with permanent magnets owing to their intrinsic soft ferromagnetism and, therefore, reducing the operation cost of the hydrogen generation process. A rate of hydrogen evolution as high as ca. 400 mL min−1 g−1 could be reached at 35 °C in 10 wt% NaBH4 solution containing 5 wt% NaOH using Ni–Ru/50WX8 catalysts. Activation energy of hydrogen generation using such catalysts is estimated at 52.73 kJ mol−1.  相似文献   

9.
Co–Cu–B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl2·6H2O and CuCl2, by an alkaline solution composed of 7.5wt% NaBH4 and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH4 concentration and reaction temperature on catalytic activity of Co–Cu–B for hydrogen generation from alkaline NaBH4 solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption–desorption isotherm have been employed to understand the results. The Co–Cu–B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 °C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol−1.  相似文献   

10.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

11.
12.
    
The hydrolysis of sodium borohydride (NaBH4) over catalysts is a promising method to produce hydrogen. Although Co-based catalysts exhibit high activity for NaBH4 hydrolysis, they are still far from satisfying practical applications, especially their poor durability in alkaline media. Herein, a carbon shell structure was designed and synthesized to improve the stability of the mixture of Co0 and CoxOy nanofilms (Co/CoxOy@C) during NaBH4 hydrolysis via a facile polymerization-pyrolysis strategy with Co/CoxOy nanofilms as the precursor. As a result, the Co/CoxOy@C catalyst can achieve a remarkable H2 generation rate of 4348.6 mL min?1 gCo?1 with a low activation energy of 43.6 kJ mol?1, which is superior to most previously reported catalysts. Moreover, the catalyst shows high stability with an H2 generation-specific rate of 79% after five cycles. The excellent performance of carbon substrate can well prevent the agglomeration of Co-based nanoparticle and improve the corrosion resistance of the active Co to BO2? and OH?. This work would widen the road for the preparation of nanoconfined catalysts, which has prospective application potentials for H2 production from NaBH4 hydrolysis.  相似文献   

13.
In the present study, nanostructured Co–Ni–P catalysts have been successfully prepared on Cu sheet by electroless plating method. The morphologies of Co–Ni–P catalysts are composed of football-like, granular, mockstrawberry-like and shuttle-like shapes by tuning the depositional pH value. The as-deposited mockstrawberry-like Co–Ni–P catalyst exhibits an enhanced catalytic activity in the hydrolysis of NaBH4 solution. The hydrogen generation rate and activation energy are 2172.4 mL min−1 g−1 and 53.5 kJ mol−1, respectively. It can be inferred that the activity of catalysts is the result of the synergistic effects of the surface roughness, the particle size and microscopic architectures. Furthermore, the stability of mockstrawberry-like Co–Ni–P catalyst has been discussed, and the hydrogen generation rate remains about 81.4% of the initial value after 5 cycles.  相似文献   

14.
    
Carbon substrates, as previously reported, are colloidal carbon spheres (CCS) that contain oxygen-rich functional groups on the surface could that provide a suitable support for Co catalysts used for the hydrolysis of NaBH4. Our results show that the unmodified CCS substrate does not adequately interact with the Co2+ precursor to decrease the cobalt ion concentration in solution. However, after successful modification of the oxygen groups on the CCS substrate's surface, the Co ion concentration in solution decreased by 30% indicating interaction of the Co ions with the substrate surface. Also the cobalt dispersion and the hydrogen generation rate (HGR) for the catalysts supported on the modified substrate is much better than for the Co catalyst supported on the unmodified substrate. Therefore, the presence of oxygen on the substrate surface is not sufficient to provide a suitable dispersion and performance for nanocatalysts and modification of the surface leads to an improved catalyst.  相似文献   

15.
Herein we report for the first time the preparation and catalytic use of the ceria supported manganese(0) nanoparticles in hydrogen generation from the hydrolysis of sodium borohydride. They are in situ formed from the reduction of manganese(II) ions on the surface of ceria nanopowders during the catalytic hydrolysis of sodium borohydride in aqueous solution at room temperature. Manganese(0) nanoparticles are isolated from the reaction solution by centrifugation and characterized by a combination of analytical techniques. Nanoceria supported manganese(0) nanoparticles are highly active and long-lived catalysts providing a turnover frequency of 417 h?1 and 45,000 turnovers in hydrogen generation from the hydrolysis of sodium borohydride at 25.0 ± 0.1 °C. They also have high durability as they retain 55% of their initial catalytic activity after the fifth cycle of hydrolysis providing a release of 4 equivalent H2 gas per mol of sodium borohydride. The noticeable activity loss in successive runs of hydrolysis is attributed to the deactivation due to agglomeration. High activity and stability of ceria supported manganese(0) nanoparticles are ascribed to the unique nature of reducible cerium oxide. The formation of cerium(III) defects under catalytic conditions provides strong binding for the manganese(0) nanoparticles to oxide surface which makes the catalytic activity and stability favorable. Our report also includes the results of kinetic study of catalytic hydrolysis of sodium borohydride depending on the temperature, catalyst and substrate concentration.  相似文献   

16.
This study aims to produce H2 from sodium borohydride (NaBH4) and to initiate its hydrolysis at elevated temperature in the absence of a catalyst. Experimental results indicated that the hydrogen generation yield increased up to %99 at 150 °C in the NaBH4 concentration of %5 wt in the acidic medium. It can be concluded that experimental characterization of the by-products is quite important since they affected the reaction mechanism or pathway. When the experiments are carried out under aqueous condition, the primary by- product is sodium metaborate while it is boric acid under acidic condition. It is postulated that by-product boric acid decreased the mass transfer limitation due to its higher solubility that prevents the formation of shell and thus increases the contact area between NaBH4 and vapor. A series of fed-batch reactions were performed to confirm the hypothesis, and the conversions of NaBH4 reached 99% under the acidic condition.  相似文献   

17.
A catalytic reactor to generate hydrogen with a large conversion efficiency and a stable rate of generation is based on a π-shaped design that decreases the effect of hydrogen on the catalyst surface so as to increase the opportunities for contact between sodium borohydride (NaBH4) and the catalyst. This novel design is tested in terms of the effect of its rate of volumetric flow, position of catalyst, angle of flow channel, ratio of areas of gas channel and flow channel, and ratio of widths of gas channel and flow channel, on the efficiency of chemical conversion and the stability of hydrogen generation. We compare this efficiency and stability with the corresponding properties of a conventional reactor. The results indicate that placing the catalyst at the back of the flow channel provided uninterrupted space for liquid and gas at the front end, thereby improving the sustainability of the sodium borohydride for the catalytic reaction. An increased angle of the flow channel improved the capability of bubbles to escape from the surface of the catalyst, which, when appropriately designed, increased the efficiency by 13.4%. The increased rate of volume flow of sodium borohydride resulted in a decreased duration of contact between sodium borohydride and the catalyst, thereby decreasing the conversion efficiency. When the rate of volume flow of sodium borohydride was 0.5–2.0 mL/min, the effect of ratios of area and widths of gas channel to flow channel on the overall conversion efficiency followed no significant pattern. A comprehensive comparison between a conventional reactor and this new gas-flow channel-based reactor showed that, when appropriately designed, the new reactors can increase the efficiency of chemical conversion from 69.7% to 90.2%, with a decreased amplitude of hydrogen generation from 250% to 42.9%.  相似文献   

18.
A series of Ni–Fe–B catalysts with different Fe/(Fe + Ni) molar ratios, used for the hydrolysis of NaBH4, were prepared by chemical reduction of NiCl2 and FeCl3 mixed solution with NaBH4. The measurements revealed that the catalysts with the molar ratio of Fe/(Fe + Ni) (30%) exhibited the highest catalytic activity, and the optimal reduction temperature is 348 K. In addition, the effects of the concentration of NaBH4, NaOH and the hydrolytic temperature of NaBH4 were discussed in detail. The results show that the reaction rate of hydrolysis first rises up and then goes down subsequently with the increase of NaBH4 concentration, as well as the concentration of NaOH. The activation energy of the hydrolysis for Ni–Fe–B catalysts is fitted to 57 kJ/mol. The maximum value of hydrogen generation is 2910 ml/(min g) at 298 K.  相似文献   

19.
In this study, 5-amino-2, 4-dichlorophenol-3, 5-ditertbutylsalisylaldimine-Ni complex catalyst is synthesised and used as an alternative to previous studies to produce hydrogen from hydrolysis of sodium borohydride. The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR and BET surface area analyses. Experimental works are carried out at 30 °C with 2% NaBH4, 7% NaOH and 5 mg of catalyst. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 ml min?1g?1 to 2240 ml min?1g?1 by an increase of 190%. At the same time, the hydrolysis reaction with pure nickel catalyst is completed in 145 min while the hydrolysis reaction with nickel-based complex catalyst is completed in 50 min. The activation energy of this hydrolysis reaction was calculated as 18.16 kJ mol?1. This work also includes kinetic information for the hydrolysis of NaBH4.The reusability of the nickel-based complex catalyst used in this study has also been studied. The nickel-based complex catalyst is maintained the activity of 72% after the sixth use, compared to the first catalytic use.  相似文献   

20.
In this study, Ni deposited carbon fiber electrode (Ni/CF) prepared by electroless deposition method was examined for their redox process and electrocatalytic activities during the oxidation of hydrogen peroxide and sodium borohydride in alkaline solutions. The Ni/CF catalyst was characterized by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and electrochemical voltammetry analysis. The electrocatalytic activity of the Ni/CF for oxidation of hydrogen peroxide and sodium borohydride in alkaline solutions was investigated by cyclic voltammetry. The anodic peak current density is found to be three times higher on Ni/CF catalyst for sodium borohydride compared to that for hydrogen peroxide. Preliminary tests on a single cell of a direct borohydride/peroxide fuel cell (DBPFC) and direct peroxide/peroxide fuel cell (DPPFC) indicate that DBPFC with the power density of 5.9 mW cm−2 provides higher performance than DPPFC (3.8 mWcm−2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号