首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rational design of transition metal catalysts with robust and durable electrocatalytic activity for hydrogen evolution reactions (HER) is extremely important for renewable energy conversion and storage, as well as water splitting. Heteroatom doping has emerged as a feasible strategy for enhancing electrocatalytic activity. Here, cobalt nanoparticles (Co-NPs) were coated with nitrogen-doped carbon nanotubes (NCNTs) prepared via an in situ growth on accordion-like Ti3C2Tx-MXene (Co-NCNT/Ti3C2Tx). Such an intriguing structure showed great features: abundant anchoring sites for NCNT in situ growth, intimate integration of Co-NPs and NCNTs, high-speed electron transfer between 1D NCNTs and 2D Ti3C2Tx-MXenes, and a large number of effective catalytic active sites. This Co-NCNT/Ti3C2Tx hybrid catalyst was demonstrated to possess excellent HER performance with low overpotential (η10, 190 mV), small Tafel slope (78.4 mV dec−1), large electrochemically active surface area, and good long-term stability, thus outperforming many reported electrocatalysts. The present strategy provided a facile route for the design of transition metal HER catalysts with NCNT and MXene.  相似文献   

2.
Developing an efficient and stable electrocatalyst for hydrogen evolution reaction (HER) remains critically signi?cance for renewable hydrogen production. Herein, a facile electrochemical reduction method was proposed to fabricate Ru nanoparticles (NPs) evenly anchored on Ti3C2Tx nanosheets (Ti3C2Tx-NS) electrocatalyst (Ru@Ti3C2Tx-NS). Interestingly, owing to the interaction between Ru NPs and Ti3C2Tx-NS, the resultant Ru@Ti3C2Tx-NS electrocatalyst performed a Pt-like electrocatalytic property for HER under the acidic solution with an ultra-low overpotential of 46.75 mV to reach ?10 mA/cm2, a small Tafel slope of 30.6 mV/dec, and long-term stability. Simultaneously, the Ru@Ti3C2Tx-NS also displayed splendid HER electrocatalytic performance in the basic condition. Furthermore, Ru@Ti3C2Tx-NS showed a lower value of Gibbs free energy for HER (?0.21 eV) than either pure Ru or Ti3C2Tx-NS from the theoretical calculation results. It is expected that such a promising approach would be extended to design and fabricate other noble metal NPs anchored MXene nanosheets for HER application.  相似文献   

3.
It is meaningful to search high-efficient and inexpensive electrocatalysts for hydrogen evolution reaction (HER) due to the energy crisis and environmental pollution. Here, we report the preparation of ultrafine Ru nanoparticles from a hybrid of ZIF-L(Co) MOF and polydopamine coated few-layered Ti3C2Tx MXene (FL-Ti3C2Tx). FL-Ti3C2Tx is used as a template to grow regular leaf-shaped ZIF-L(Co) nanosheets through the reaction of Co ions anchored on the MXene surface with 2-methylimidazole. The obtained hybrid is then doped with Ru ions through ion exchange between Ru and Co ions, followed by thermal annealing at a temperature of 350 °C in an Ar atmosphere to produce ultrafine Ru nanoparticles. The obtained Ru@ZIF-L(Co)/FL-Ti3C2Tx nanocomposite shows outstanding HER performance with a low overpotential of 16.2 mV at a current density of 10 mA cm?2, a small Tafel slope of 21.0 mV dec?1 and excellent stability in 1.0 M KOH solution. This work provides a new strategy for the design and synthesis of highly efficient HER catalyst via MOFs with tunable composition and structure.  相似文献   

4.
Developing highly efficient and low cost electrocatalysts for hydrogen evolution reaction (HER) is a popular topic for electrocatalytic water splitting to hydrogen technology. Herein, we report a novel heterostructure electrocatalyst prepared by the S-doping multilayer niobium carbide (S-ML-Nb4C3Tx) through hydrothermal technique. Compared with pristine ML-Nb4C3Tx catalyst, the as prepared electrocatalyst presents remarkable catalytic activity for HER with lower overpotential of 118 mV@10 mA/cm2 and a Tafel slope of 104 mV dec?1 in 1.0 M KOH solution. In addition, the catalyst exhibits a stable electrochemical durability of as long as 24 h in 1.0 M KOH. Efficient HER ability of the S-ML-Nb4C3Tx catalyst is mainly attributed to the following points: Firstly, the ML-Nb4C3Tx with superior conductivity and stability can effectively avoid the aggregation and oxidation. Secondly, the conversion of fluorine termination groups to –OH by TMAOH treatment can expose more active sites. Further, after the S-doping by hydrothermal reaction, NbS2 nanoparticles can prevent the ML-Nb4C3Tx nanosheets from restacking. As a result, the enlarged interlayer spacing and porous structure of the catalyst are conducive to the charge transfer. In addition, the introduction of NbS2 nanoparticles on the surface of ML-Nb4C3Tx can form heterostructure and subsequently adjust the electronic structure of the catalyst, accelerate the electron transfer, and improve the HER performance. This work presents a new strategy for the designing and preparation of low cost MXene-based catalysts for HER application.  相似文献   

5.
Development of electrocatalytic hydrogen production technology is the key to solving environmental and energy problems. Two-dimensional material Mo2TiC2Tx (Tx = –OH, –F) has shown great potential in electrocatalytic hydrogen evolution because of its excellent conductivity and hydrophilicity. However, due to the lack of sufficient active sites of Mo2TiC2Tx itself, its practical applications in electrocatalytic hydrogen evolution are limited. In this work, a highly-efficient hydrogen evolution electrocatalyst, namely Pd@MoS2/Mo2TiC2Tx, is prepared through a simple pyrolysis method. In such a composite, the MoS2 nanoflowers hybridized with the ammonia-treated Mo2TiC2Tx (MoS2/Mo2TiC2Tx) are used as a substrate for loading a small number of Pd nanoparticles (4.27 at.%). Notably, the introduction of Pd nanoparticles into MoS2/Mo2TiC2Tx provides abundant active sites for the hydrogen evolution reaction, improves the conductivity of the electrocatalyst, speeds up the adsorption and desorption of hydrogen, and induces a synergistic effect with the MoS2. As a result, the Pd@MoS2/Mo2TiC2Tx catalyst exhibits excellent electrocatalytic performance and remarkable stability in both acidic and alkaline media. In a 0.5 mol/L H2SO4 electrolyte, the overpotential of Pd@MoS2/Mo2TiC2Tx was 92 mV with a Tafel slope of 60 mV/dec at a current density of 10 mA/cm2. Meanwhile, the catalyst displayed an overpotential of 100 mV associated with a Tafel slope of 80 mV/dec at the current density of 10 mA/cm2 in a 1 mol/L KOH electrolyte. This work shows the great potential of using Mo2TiC2Tx-based material in the field of electrocatalysis.  相似文献   

6.
Electrocatalytic hydrogen evolution reaction (HER) is one of the green and effective method to produce clean hydrogen energy. However, the development of non-Pt HER catalysts with excellent catalytic activity and long-term stability still remains a great challenge. Herein, a vertically aligned core-shell structure material with hollow polypyrrole (PPy) nanowire as a core and Ru-doped MoS2 (Ru–MoS2) nanosheets as a shell is firstly reported as a highly efficient and ultra-stable catalyst for HER in alkaline solutions. Results indicate that Ru–MoS2@PPy catalyst demands a low overpotential of 37 mV at 10 mA cm?2. In addition, the overpotential at 100 mA cm?2 is 157 mV and it is almost unchanged after 40,000 cyclic voltammetry cycles. The existence of PPy core not only ensures the vertical growth of MoS2 nanosheets to expose more edge sites, but also promotes the rapid transfer of electrons, contributing to the improvement of catalytic activity. More importantly, the strong interface interaction between MoS2 and PPy prevents the collapse of the vertical structure of MoS2 sheets in the electrocatalytic process and greatly enhances the stability of catalysts, which offers an effective strategy to design and synthesize the HER catalysts with superior catalytic stability.  相似文献   

7.
Molybdenum sulfide (MoS2) as a graphene-like sheet material has attracted wide attention owing to the potential for hydrogen evolution reaction (HER). However, the large-scale application of MoS2 is still difficult due to the inherent poor conductivity and insufficient active edge sites. Herein, we develop a simple method to grow P-doped MoS2 nanosheets on carbon cloth for high efficiency HER. The 2D carbon cloth can prevent the stacking of MoS2 nanosheets and improve the conductivity with the doping of P atoms. As a result, the P–MoS2/CC-300 shows the excellent electrocatalytic activity with an overpotential of 81 mV at 10 mA cm?2 and the lower Tafel slope of 98 mV/dec. Furthermore, it also shows the good electrocatalytic durability for 15 h. This work provides an opportunity for the design of excellent and robust MoS2-based catalyst via structural engineering and doping method.  相似文献   

8.
In this work, NiFe LDH/Ti3C2Tx/Nickel foam (NF) was successfully prepared as a binder-free electrode by depositing NiFe layered double hydroxide (LDH) nanosheets on Ti3C2Tx/NF substrate through electrodeposition approach. The strong electrostatic interactions between the negatively charged surface of MXene and positively charged NF substrate enabled the direct growth of NiFe LDH nanosheets on Ti3C2Tx/NF substrate. As a result, the as-prepared NiFe LDH/Ti3C2Tx/NF electrode exhibited an excellent OER performance, fast catalytic reaction kinetics and good chemical stability. Its overpotential reached 200 mV at a current density of 10 mA cm?2, and the cycling tests suggested a good cycling stability.  相似文献   

9.
MoS2 has been one of a widely researched hydrogen evolution reaction (HER) catalyst materials in recent years. However, the basal plane of MoS2 is considered to be inactive to hinder its further development. Herein, a new mass-scalable and facile intercalation method for the fabrication of multiple products, including pore-rich monolayer MoS2 (PR MoS2) and MoS2 quantum dots (MoS2 QDs), has been developed via the gas phase etching of bulk MoS2 in an acetone vapor atmosphere. The obtained monolayer MoS2 QDs with a narrow lateral size distribution (average size: 2.5 nm) present excitation-independent photoluminescence emission. Furthermore, the PR MoS2 shows a significantly enhanced HER electrocatalytic activity and good stability in 0.5 M H2SO4 solution with a small overpotential of 241 mV at a current density of 10 mA cm−2. These results demonstrate that the as-prepared PR MoS2 is very promising for the application in HER.  相似文献   

10.
The MoS2/Ti3C2 catalyst with a unique sphere/sheet structure were prepared by hydrothermal method. The MoS2/Ti3C2 heterostructure loading 30% Ti3C2 has a maximum hydrogen production rate of 6144.7  μmol g−1 h−1, which are 2.3 times higher than those of the pure MoS2. The heterostructure maintains a high catalytic activity within 4 cycles. The heterostructure not only effectively reduce the recombination of photogenerated electrons and holes, but also provide more activation sites, which promotes the photocatalytic hydrogen evolution reaction (HER). These works can provide reference for the development of efficient catalysts in photocatalytic hydrogen evolution.  相似文献   

11.
As a two-dimensional material, molybdenum disulfide (MoS2) exhibits great potential to replace metal platinum-based catalysts for hydrogen evolution reaction (HER). However, poor electrical conductivity and low intrinsic activity of MoS2 limit its application in electrocatalysis. Herein, we prepare a defective-MoS2/rGO heterostructures material containing 1T phase MoS2 and evaluate its HER performance. The experimental results shown that defective-MoS2/rGO heterostructures exhibits outstanding HER performance with a low overpotential at 154.77 mV affording the current density of 10 mA cm?2 and small Tafel slope of 56.17 mV dec?1. The unique HER performance of as-prepared catalyst can be attributed to the presence of 1T phase MoS2, which has more active sites and higher intrinsic conductivity. While the defects of as-prepared catalyst fully expose the active sites and further improve catalytic activity. Furthermore, the interaction between MoS2 and rGO heterostructures can accelerate electron transfer kinetics, and effectively ensure that the obtained catalyst displays excellent conductivity and structural stability, so the as-prepared catalyst also exhibits outstanding electrochemical cycling stability. This work provides a feasible and effective method for preparation of defective-MoS2/rGO heterostructures, which also supplies a new strategy for designing of highly active and conductive catalysts for HER.  相似文献   

12.
The mixed metal dichalcogenides combination of WS2–MoS2 was coated onto Cu substrate by electroless NiMoP plating technique and the electrocatalytic hydrogen evolution reaction (HER) performance was investigated. The enhanced structural, morphological parameters and boosted electrocatalytic performance of the various metal-metal molar ratio of WS2–MoS2 onto NiMoP plate were identified under variable operating conditions and it was successfully evaluated by various characterization techniques. The well-defined crystalline nature, phase, particle size, structure, elemental analysis and surface morphology of prepared coatings were analyzed by FESEM, XRD, AFM and EDS mapping. The electrochemical analysis was performed using open circuit potential (OCP) analysis, chronoamperometry (CA), electrochemical impedance spectroscopy (EIS), Tafel curves, linear sweep voltammetry (LSV), cyclic voltammetry (CV) and polarization studies to find the activity of prepared electrocatalyst towards electrochemical hydrogen evolution reactions. The performance of bare NiMoP and WS2–MoS2/NiMoP plates were compared and found that the HER activity of NiMoP can be reinforced by composite incorporation through the synergic effect arises with in the catalytic system, which improves surface roughness and enhances the magnitude of electrocatalyst toward HER. The achievement of enhanced catalytic performance of coatings was authenticate by the kinetic parameters such as decreases in Tafel slope (98 mV dec?1), enhanced exchange current densities (9.32 × 10?4 A cm?2), and a lower overpotential. The consistent performance and durability of the catalyst were also investigated. The enhanced electrocatalytic activity of WS2–MoS2/NiMoP coatings increased with respect to the surface-active sites associated with combination of mixed dichalcogenides and the synergic effect arises in between different components present in the coating system. This work envisages the progressive strategies for the economical exploration of a novel WS2–MoS2/NiMoP water splitting catalyst used for large scale H2 generation. The prepared WS2–MoS2/NiMoP embedded Cu substrate possess high catalytic activity due to its least overpotential of 101 mV at a benchmark current density of 10 mA cm?2, which demonstrated the sustainable, efficient and promising electrocatalytic property of prepared catalyst towards HER under alkaline conditions.  相似文献   

13.
Amorphous molybdenum sulfide (MoSx) materials have been considered as cheap and promising catalysts for hydrogen evolution reaction (HER). In this contribution, we report that the amorphous MoSx catalysts prepared by the low temperature thermolysis of the (NH4)2MoS4 precursors on carbon clothes (catalyst loading: 3.2 mg/cm2) exhibit a Tefal slope of 50.5 mV/dec and a high exchange current density of 1.5 × 10−3 mA/cm2 in 0.5 M H2SO4 solutions. Spectroscopic studies of the amorphous MoSx catalysts show that the increase of HER efficiency is positively correlated to the concentration of S22− species, providing strong evidence to support the argument that S22− is an active species for electrocatalytic HER. Additionally, the method for preparing catalysts is simple, scalable and applicable for large-scale production.  相似文献   

14.
Molybdenum disulfide (MoS2), as a promising catalyst, has been widely investigated for hydrogen evolution reaction (HER). But the low density and poor reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst, leads to the modest performance. In this work, we demonstrate an effective route to overcome those issues by decorating the conductive LixMoS2 nanoparticles on the three-dimensional carbon fiber paper (CFP) through combining hydrothermal method and lithium intercalation. Thus, the dense LixMoS2 nanoparticles of the surface can provide the large number of exposed active sites, the highly-conductive LixMoS2 nanoparticles and CFP substrate can facilitate the transfer of electron not only between the LixMoS2 nanoparticles and CFP, but also between the whole sample and current collector, and the porous networked structure can enable the diffusion and penetration of electrolyte. Prompted by those advantage, the as-prepared samples exhibit outstanding HER catalytic activity with the small Tafel slope of 62 mv dec?1 and the low overpotential of ?115.6 mV vs RHE at an electrocatalytic current density of 10 mA cm?2. Chronoamperometric current test for 10 h confirms the long-term stability of the catalyst.  相似文献   

15.
Developing an effective and facile method to achieve mass production of MoS2 nanostructures with abundant of edges may be the feasible way to meet the increasing demand for hydrogen evolution electrocatalysts. We developed a facile glucose-assisted hydrothermal method to in-situ grow MoS2 nanosheets on the commercial carbon nanofibers (CNFs). The controlled growth of MoS2 on CNFs (MoS2@CNFs) is leveraged to reveal mass ratio- and structure-dependent catalytic activity in the hydrogen evolution reaction (HER). Due to the unique shell structure, abundant edges of the MoS2 layer are exposed as active site, as well as the underlying CNFs effectively improves the conductivity, the resulting MoS2@CNFs hybrid exhibited high electrocatalytic activity in HER. The catalyst demonstrated the lowest overpotential of 52 mV, the highest current density of 101.49 mA cm?2 at ~200 mV overpotential and the smallest Tafel slope of 49 mV/decade, suggesting the Volmer–Heyrovsky mechanism for the MoS2-catalyzed HER.  相似文献   

16.
2D transition metal carbides, nitrides and carbonitrides, namely the MXenes, attract more and more attentions due to their unique properties. Here, we report a simple one-step molten salt etching method to prepare Co modified MXene hybrid (Ti3C2Tx:Co) by the reaction of Ti3AlC2 with Lewis acid CoCl2 at 750 °C. Most of Co atoms aggregates in the interlayered space of Ti3C2Tx. Benefitting from the improved electron charge transfer efficiency and increased active sites, the sulfuric acid treated Ti3C2Tx:Co-12h hybrid exhibits excellent electrocatalytical activity for hydrogen evolution reaction in alkaline media, delivering a current density of 10 mA cm−2 at an overpotential of 103.6 mV, which is lower than most noble metal free MXene based electrocatalysts. The results illustrate that the proposed method is very facile and useful to incorporate mid-to-late transition metals into the MXene phase to prepare MXene based HER electrocatalysts.  相似文献   

17.
Exploring inexpensive and earth-abundant electrocatalysts for hydrogen evolution reactions is crucial in electrochemical sustainable chemistry field. In this work, a high-efficiency and inexpensive non-noble metal catalysts as alternatives to hydrogen evolution reaction (HER) was designed by one-step hydrothermal and two-step electrodeposition method. The as-prepared catalyst is composed of the synergistic MoS2–Co3S4 layer decorated by ZnCo layered double hydroxides (ZnCo-LDH), which forms a multi-layer heterostructure (ZnCo/MoS2–Co3S4/NF). The synthesized ZnCo/MoS2–Co3S4/NF exhibits a small overpotential of 31 mV and a low Tafel plot of 53.13 mV dec?1 at a current density of 10 mA cm?2, which is close to the HER performance of the overpotential (26 mV) of Pt/C/NF. The synthesized ZnCo/MoS2–Co3S4/NF also has good stability in alkaline solution. The excellent electrochemical performance of ZnCo/MoS2–Co3S4/NF electrode originates from its abundant active sites and good electronic conductivity brought by the multilayer heterostructure. This work provides a simple and feasible way to design alkaline HER electrocatalysts by growing heterostructures on macroscopic substrates.  相似文献   

18.
--Owing to its unique physicochemical properties, two-dimensional (2D) layered MoS2 has been proposed as a potential catalyst for efficient hydrogen evolution reaction (HER). However, their large-scale application is still hindered due to limited active sites, poor conductivity, and restacking during synthesis. Herein, we report a one-step hydrothermal route to grow MoS2 nanosheets on molybdenum (Mo) foil substrate followed by Au decoration as an active cocatalyst to enhance the HER performance of MoS2 nanosheets. A facile, quick, and controlled decoration of stable Au overlayer with different mass loadings was performed using a sputtering Au coating unit for different deposition times (10s, 30s, and 50s), thus paving the way for producing efficient and inexpensive HER electrocatalysts. Electrochemical studies of different Au–MoS2/Mo hybrids demonstrate that the optimized Au–MoS2/Mo-30s sample exhibits ultralow onset potential (52 ± 2 mV vs. RHE), small overpotentials of 136 ± 6 and 318 ± 3 mV (vs. RHE) at current densities of 10 and 100 mA cm?2, a small Tafel slope (46.23 ± 6 mV/dec), along with an outstanding electrochemical stability over a couple of days. Presence of metallic 1T-phase of MoS2, as well as the synergistic effect between MoS2 and Au, result in enhanced electrical conductivity, high density of active sites, large electrochemically accessible surface area, and fast charge transfer at the catalyst-electrolyte interface for boosting HER activity of the hybrid catalyst.  相似文献   

19.
Molybdenum sulfide (MoSx) has recently emerged as a promising catalyst for the hydrogen evolution reaction (HER) in water splitting that may replace the noble metal, such as platinum, as a cost-effective and high catalytic materials. It has been reported that two-dimensional structured MoSx exhibit significant amount of exposed S-edge, which can be an active electrocatalytic catalyst for hydrogen production. However, the current reports mainly focusing on the planar electrode, where the catalyst utilization and the number of active sites are limited due to the lower exposed specific surface area (SSA) of supporting electrodes. In this work, we utilize the freeze-drying method to produce a porous three-dimensional (3D) structure assembled by graphene flakes. The as-prepared 3D graphene scaffold shows high surface area, high porosity while low density, which makes it as an ideal conductive electrode for supporting of MoSx catalysts. Moreover, it was found out that the crystallinity of MoSx, controlled by thermolysis temperature of thiosalts precursor ((NH4)2MoS4), shows significantly influence the performance of HER. The optimized annealing temperature for the designed hybrid electrodes (MoSx/3D-graphene) was found to create a lot of active sites, which facilitate the electrocatalytic performance for water splitting (overpotential of 163 mV @10 mA/cm2 and a Tafel slope of 41 mV/dec). The study provides a potential material, which could pave the way for future applications of hydrogen energy.  相似文献   

20.
In this study, conductive Ti3C2 MXenes were used as a promoter to accelerate charger transfer of MoS2, realizing highly efficient HER electrocatalysis. A facile hydrothermal strategy is demonstrated to be effective for in situ growth of MoS2 nanosheets vertically standing on planar Ti3C2 nanosheets to form hierarchical heterostructures. Beneficial from the opened layer structures and strong interfacial coupling effect, the resulting MoS2/Ti3C2 heterostructures achieve a giant enhancement in HER activity compared with pristine MoS2 nanosheets. More specifically, the catalytic current density induced by MoS2/Ti3C2 heterostructures at an overpotential of ∼400 mV is nearly 6.2 times as high as that of the pristine MoS2 nanosheets. This work uncovers that the Ti3C2 nanosheets are ideal candidates for construction of highly active electrocatalysts for water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号