首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Novel ZnIn2S4/CaTiO3 nanocubes were prepared by a two-step method and used as a visible light photocatalyst for efficient hydrogen production. The control of the content of CaTiO3 could effectively change the photocatalytic H2 production activity of ZnIn2S4/CaTiO3 nanocubes, and the maximum H2 evolution amount reached to 133116.43 μmol g−1 in 6 h. The photocatalytic hydrogen production efficiency of ZnIn2S4/CaTiO3 nanocubes was almost 4.5 times higher than that of pure ZnIn2S4. The electrochemical impedance spectrum of ZnIn2S4/CaTiO3 exhibited the smallest arc radius, time-resolved PL spectrum showed that the carrier lifetime of ZnIn2S4/CaTiO3 nanocubes was 3.29 ns, and the photocurrent density of ZnIn2S4/CaTiO3 reached to 0.81 μA cm−2. The prepared ZnIn2S4/CaTiO3 nanocubes increased visible light absorption, improved the separation and transfer of photo-generated electrons and holes, and inhibited the recombination of photo-generated electron-hole pairs. ZnIn2S4/CaTiO3 nanocubes exhibited the enhanced photocatalytic activity and high stability, and could be used as promising photocatalyst for hydrogen production application.  相似文献   

2.
Copper oxides are considered efficient photocatalysts for H2 generation. In addition, due to their interesting properties such as surface plasmon resonance, they are applied in photo-induced reactions. In heterogeneous photocatalysis, CuO and Cu2O are the main oxides based in copper that are used as catalysts in water splitting. In this work, Cu2O is prepared by precipitation method assisted with ultrasound and microwave radiation at 80 °C. For the Cu2O synthesis, the use of glucose is proposed as a reducing agent due to its abundance in nature, non-toxicity, and low cost. According to the results obtained, the highest glucose concentration and the suspension exposure to microwave irradiation promote the formation of Cu2O particles with low and homogeneous particle size and a convenient position of their conduction and valence band to produce H2. The highest H2 generation using Cu2O under the aforementioned experimental conditions is 78 μmol gcat?1. Additionally, the effect of adding glucose in the photocatalytic reaction is studied in order to provide more electrons to the reaction due to its effect as a hole scavenger, which inhibits the recombination of the electron and hole, promoting a higher H2 production (400 μmol gcat?1).  相似文献   

3.
Hydrogen production by water splitting is a promising method to store energy. Water-oxidation reaction is a bottleneck in water-splitting systems. Herein, a mononuclear nickel(II) phosphine complex with 1,2-bis(dicyclohexylphosphino)ethane ligand, was synthesized and characterized by X-ray crystallography method. The water-oxidizing catalyst under the electrochemical condition was studied. The role of Ni compound for the water-oxidation reaction on the surface of fluorine-doped tin oxide as one of the true catalysts was investigated by the electrochemical methods and Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) Spectroscopy. The big ligand around the Ni ion causes a very small size of Ni-based particles on the surface of the electrode, which are the active catalysts for the water-oxidation reaction. Such small nanosized Ni-based compounds are transparent and have no effect on the transparency of the obtained fluorine-doped tin oxide. Thus, it is a promising method to synthesize a transparent fluorine-doped tin oxide with water-oxidizing activity.  相似文献   

4.
Solvothermal and chemical reduction of graphene oxide with N2H4 or HI affect the surface composition, rupture and delamination degree of reduced graphene oxide (rGO). Higher reduction and stacking of rGO was achieved by chemical reduction with HI, while solvothermal reduction and, especially, the chemical reduction with N2H4 lead to higher delamination of rGO. The incorporation of the different rGO to CdS implies changes in the characteristics and photoactivity of the CdS-rGO hybrids. A promoter effect was observed in all CdS-rGO hybrids respect to the photoactivity of bare CdS, observing the better photoactivity on the hybrid in which the graphene oxide was reduced with HI (CdS-rGO/HI). The variations in the photoactivity of CdS-rGO hybrids are analyzed in terms of changes in the structure, surface and light absorption ability of CdS and also analyzing the contact of CdS with rGO. The greater concentration of small CdS nanostructures with strong quantum confinement is in the origin of the enhancement in photoactivity observed in the CdS-rGO/HI hybrid.  相似文献   

5.
Depletion of fossil fuels and associated environmental issues has drawn attention of researchers to renewable energy resources and photocatalytic hydrogen production is considered to be safe and applicable method to meet future energy demand. Herein, we have used α-Bi2O3 nanorods for loading CZS (Cd0.5Zn0.5S) to form a heterostructure for photocatalytic H2 production. The α-Bi2O3/CZS heterostructure was characterized through TEM, Elemental Mapping, XRD and XPS analysis. The α-Bi2O3/CZS heterostructure shows photocatalytic H2 production rate of 254.1 μmol h?1 with apparent quantum yield of 6.8% (λ = 420 nm). The enhanced photocatalytic performance was supported by transient photocurrent response curves and electrochemical impedance spectroscopy (EIS) results which suggest the efficient charge separation and electron mobility in α-Bi2O3/CZS heterostructure. The intimate contact formed between α-Bi2O3 nanorods and CZS nanoparticles responsible for the efficient flow of electrons following a Z-scheme pattern resulting in higher photocatalytic H2 production. Moreover, the as-synthesized α-Bi2O3/CZS heterostructure shows negligible loss of activity after 4 consecutive recycling cycles. Our findings open new possibilities for the design of heterostructure based photocatalysts.  相似文献   

6.
    
The main aim of this study is to propose a fast and simple synthesis method for GO-TiO2 nanocomposites, which present self-tuning optoelectronic properties, advantageous features, for their application towards the photocatalytic hydrogen production. Graphene oxide (GO) was prepared through a modification of the Tour method from powder graphite by applying a microwave pretreatment. GO-TiO2 nanocomposites were synthesized by visible-light assisted anchoring, while the study of morphology, crystalline structure, size, surface area and optical characterization of the material was carried out by SEM, XRD, TEM, BET and UV-Vis spectroscopy, respectively. Photocatalytic activity evaluation of the composite material (GO-TiO2) towards hydrogen production through the water splitting reaction from water under visible light was followed by gas chromatography, reaching a production of 6500 μmolH2/g, thus showing an enhancement effect compared to the conventional H2 production using TiO2 only.  相似文献   

7.
We successfully synthesized mesocrystalline Ta2O5 nanosheets supported bimetallic PdPt nanoparticles by the photo-reduction method. The as-prepared mesocrystalline Ta2O5 nanosheets in this work showed amazing visible-light absorption, mainly because of the formation of oxygen vacancy defects. And the as-prepared bimetallic PdPt/mesocrystalline Ta2O5 nanaosheets also showed highly enhanced UV–Vis light absorption and highly improved photocatalytic activity for hydrogen production in comparison to that of commercial Ta2O5, mesocrystalline Ta2O5 nanosheets, Pd/mesocrystalline Ta2O5 nanosheets and Pt/mesocrystalline Ta2O5 nanosheets. The highest photocatalytic hydrogen production rate of PdPt/mesocrystalline Ta2O5 nanaosheets was 21529.52 g?1 h?1, which was about 21.2 times of commercial Ta2O5, and the apparent quantum efficiency of PdPt/mesocrystalline Ta2O5 nanaosheets for hydrogen production was about 16.5% at 254 nm. The highly enhanced photocatalytic activity was mainly because of the significant roles of PdPt nanoparticles for accelerating the charge separation and transport upon illumination. The as-prepared PdPt/mesocrystalline Ta2O5 nanaosheets in this work could serve as an efficient photocatalyst for green energy production.  相似文献   

8.
    
Photocatalytic water splitting to produce hydrogen has attracted extensive attention and exhibited broad development prospects. In this work, CuInS2 microflowers were fabricated through the solvothermal method, and decorated with CdSe quantum dots on the surface. As-prepared CdSe/CuInS2 microflowers exhibited high photocatalytic hydrogen production activity (10610.37 μmol g?1 h?1) and high AQE of 48.97% at 420 nm. The enhanced photocatalytic hydrogen production activity owing to the construction of p-n heterostructure improved light absorption ability, increased electrons transfer efficiency and reduced recombination of photo-induced electrons and holes. Moreover, high stability and cyclic utilization of CdSe/CuInS2 microflowers were beneficial to photocatalytic hydrogen production application.  相似文献   

9.
    
Traditional surface-to-surface contact heterojunctions suffer from poor stability and low electron-hole separation efficiency, which has become a crucial limiting the further improvement of photocatalytic property. Therefore, improving the combination of heterogeneous materials will become a new attempt. In this work, a novel lattice embedded ZnO@TiO2(B) nanoflowers was prepared by combining electrodeposition method combined with hot solvent method. The hetero interface of the ZnO@TiO2(B) nanoflowers is distributed in the phase of TiO2(B), which drives high-efficiency charge separation. The sample Zn:Ti 1:4 has the highest photocatalytic property, and the H2 generation efficiency under the full spectrum is 1.695 mmol g?1 h?1, which is 3.5 times that of TiO2(B). After 36 h cycle stability test, its stability is as high as 90%. According to results, the possible mechanism of ZnO@TiO2(B) photocatalytic hydrogen production is proposed. These findings may provide new strategies for the preparation of high-efficiency heterojunction photocatalysts with special structures.  相似文献   

10.
    
In this work, the 2D SnS/g-C3N4 nanosheets have been successfully prepared by a facile ultrasonic and microwave heating approach, which formed intimate interfacial contact and suitable energy band structure. The optimized sample displayed enhanced photocatalytic hydrogen evolution from water assisted with Pt co-catalyst, which is much higher than that of pure g-C3N4. After loaded with MoO3 particles, the stability of photocatalysts displayed significate improvement due to the formed Z-scheme heterojunction. With the characterization, the enhanced hydrogen evolution reaction (HER) performance might be ascribed to the improved light-harvesting capability of the composite, lowered charge-transfer resistance, increased electrical conductivity and the co-catalyst effect of SnS. This study provides insights about SnS assisted HER photocatalysts and a new strategy to improve the stability of metal sulfides photocatalysts.  相似文献   

11.
    
Pt-based nanoframes (NFs) have the advantages of high atomic utilization, more unsaturated coordination sites and open space structure, and have achieved wide applications in thermal/electrocatalysis. Herein, Pt3Pd NFs coupled with CdS was applied in hydrogen generation from water-splitting under visible light, and it exhibits an excellent hydrogen generation rate, 92.5 mmol/h/g (AQY = 65.9%, λ = 420 nm). The synthesis of Pt3Pd NFs cocatalyst underwent the following processes: the formation of Pd nanocubes (NCs), PtPd4 NCs by site-selected deposition of Pt atoms on the edges of Pd NCs, and the target Pt3Pd NFs enclosed by {200} with an average size of 18 nm was obtained via internal etching. The structure and composition of Pt3Pd NFs were analyzed using TEM, XRD and XPS, and the charge transfer and separation mechanism were also investigated by electrochemical workstation, ESR and work function. The testing results indicated that Pt3Pd NFs cocatalyst acting as trapping centers benefit the electrons transfer, and thus promote the separation efficiency of photo-induced carriers. This work reveals that the structure and composition regulation of Pt-based cocatalyst plays a vital role in its active performance.  相似文献   

12.
    
Low-cost semiconductor photocatalysts that can efficiently harvest solar energy and generate H2 from water or alcohols will be critical to future hydrogen economies. Co-catalyst loading and/or doping of foreign element at host material have been crucial for semiconductor photocatalyst to produce significant H2 evolution, so far. We synthesized native-visible-light driven Sn3O4 photocatalyst, which significantly catalyzed hydrogen evolution from various alcohol solutions under irradiation of visible light (λ > 400 nm), without co-catalyst. The H2 production reaction proceeded through hydroxyalkyl radical reaction in the methanol solution. The apparent quantum yield was 0.4% for the Sn3O4 competitive to that of visible-light-sensitive co-catalyst loaded doped photocatalyst. The enhanced hydrogen evolution is attributed to the desirable band gap and band edge positions (CBM and VBM) of the Sn3O4 for H2 production in visible light, which would originate from atomically layered structure of Sn3O4. The Sn3O4 material is good promising photocatalyst for solar hydrogen production from alcohols.  相似文献   

13.
Water-methanol suspensions of size-tuned hollow MoS2 “inorganic fullerenes” (IF) combined with high surface area anatase TiO2 efficiently promote photo catalytic hydrogen evolution reaction (PHER). Despite low amount of the MoS2 slabs edges in the structure of closed-shell IF-MoS2 particles and relatively poor dispersion of co-catalyst, the best composite catalysts were nearly 50% as active as Pt/TiO2 benchmark and considerably more active than the reference MoS2–TiO2 catalysts containing highly dispersed MoS2 slabs. Straightforward experimental evidence is given that hydrogen can be formed due to transfer of stored (accumulated) electrons from TiO2 to the IF-MoS2 particles in liquid suspension. Electrochemical flat band potential measurements support the possibility of electrons transfer from TiO2 to IF-MoS2.  相似文献   

14.
    
Heteroatom (N, B and P) doped reduced graphene oxide (RGO)-metal chalcogenide nanocomposites (RGO-Cd0.60Zn0.40S) were prepared by the solvothermal method, and then they were characterized with X-ray diffraction, Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV–Vis diffuse reflectance spectroscopy and photoluminescence techniques. Doping of RGO with heteroatoms of N, B and P increased charge-transfer capability of nanocomposites and thus, improved both photocatalytic and photoelectrochemical hydrogen production activities of them. N-doped RGO-Cd0.60Zn0.40S photocatalyst exhibited the highest photocatalytic hydrogen production rate (1114 μmolh−1 g−1) in photocatalytic (PC) system amongst other and it was 1.5 times higher than that of RGO-Cd0.60Zn0.40S photocatalyst. Having a current density of 0.92 mAcm−2, photoelectrochemical hydrogen production activity of N-RGO-Cd0.60Zn0.40S electrode was found to be 3 times higher than RGO-Cd0.60Zn0.40S photoelectrode without any applied bias potential under visible light irradiation in photoelectrochemical system. In general, these results clearly showed that heteroatom doping of RGO led to promising materials for renewable hydrogen production in the photocatalytic and photoelectrochemical systems.  相似文献   

15.
    
Developing low cost co-catalysts is crucial for both fundamental research and practical application of g-C3N4. In this work, we prepared ternary Ni2P/rGO/g-C3N4 nanotubes with different Ni2P contents for visible-light-driven photocatalytic H2 generation from triethanolamine aqueous solution. The optimal Ni2P/rGO/g-C3N4 produced H2 at a rate of 2921.9 μmol h−1 g−1, which is about 35, 16 and 9 times as large as that of g-C3N4, binary rGO/g-C3N4 and Ni2P/g-C3N4, respectively. The apparent quantum efficiency of optimal Ni2P/rGO/g-C3N4 was 5.6% at λ = 420 nm. We believe that the improved photocatalytic performance of Ni2P/rGO/g-C3N4 originates from the synergistic effect of rGO as electron transfer medium and Ni2P as reaction site, which is supported by photoelectrochemical and photoluminescence measurements. Cyclic experiment demonstrated an excellent stability of Ni2P/rGO/g-C3N4. Moreover, we further studied the effect of other nickel-based compounds by replacing Ni2P with NiS, Ni3C, and Ni3N, respectively. The order of the H2-generation rate is Ni2P/rGO/CNNT > NiS/rGO/CNNT > Ni3C/rGO/CNNT > Ni3N/rGO/CNNT, which could be reasonably explained based on Mott–Schottky plots. Our work reveals that Ni2P can be used as a promising cocatalyst for photocatalytic H2 evolution.  相似文献   

16.
An optimized Ru-doped LaFeO3 photocatalyst was coupled with magnetic Fe2O3 particles and was tested in the photocatalytic hydrogen production from glucose degradation under visible light irradiation. The catalysts were successfully synthesized by solution combustion synthesis using citric acid as organic fuel. Complete glucose degradation and hydrogen production of 5460 μmol/L was obtained after 4 h of irradiation using composite containing 67 wt% of Ru-doped LaFeO3. After seven cycles of reuse, the photocatalytic activity did not change, evidencing the high stability of the magnetic photocatalyst, which can be recovered from the photoreactor using an external magnetic force. The recyclable sample was finally tested in the treatment of real wastewater from cherries washing process, and a very high hydrogen production (12344 μmol/L) was achieved. Finally, the possibility to couple the photocatalytic process (used for the production of hydrogen) with a heterogeneous photo-Fenton process was investigated in order to mineralize the unconverted organics in the wastewater coming from the photoreactor.  相似文献   

17.
    
An efficient visible light responsive photocatalyst Ce/N co-doped SrTiO3 was prepared via a hydrothermal method for hydrogen production. The phase structure, morphology, contents and valence states of the dopant elements, specific surface area, optical properties, and photocatalytic activity of the samples were characterized. The transient photocurrent response and electrochemical impedance spectra under visible light illumination indicated that Ce/N co-doped SrTiO3 possessed a more intense photo-current response and lower surface resistance than N–SrTiO3 and Ce–SrTiO3. The water splitting rate of Ce/N-co-doped SrTiO3 is 4.28 mmol/g/h, which is 84.49 times higher than that of pure SrTiO3. The enhanced photocatalytic performance is due to the narrowing of the band gap of SrTiO3 by Ce ion and N ion impurities.  相似文献   

18.
    
Novel Cd0.67Mo0.33Se/In2O3 hollow nanotubes were prepared for photocatalytic hydrogen production application. Under visible light irradiation, Cd0.67Mo0.33Se/In2O3 hollow nanotubes showed enhanced photocatalytic performance. And the apparent quantum efficiency of 34.86% was obtained when irradiated with 420 nm monochromatic light. The modification of Cd0.67Mo0.33Se QDs on the surface of In2O3 hollow nanotubes effectively improved the utilization rate of light absorption, increased the separation and migration rate of electrons, inhibited the recombination of photo-generated electron and hole pairs, thus enhancing the photocatalytic activity of water splitting to produce hydrogen. It would be an efficient photocatalyst for hydrogen production application in future.  相似文献   

19.
In recent years, tremendous efforts have been devoted to develop new photocatalyst with wide spectrum response for H2 generation from water or aqueous solution. In this work, CdS nanoparticles (NPs) have been immobilized on hydrogenated three-dimensional (3D) branched TiO2 nanorod arrays, resulting in a highly efficient photocatalyst, i.e, CdS/H-3D-TiO2. In addition, electrochemical reduction of H+ ion is identified as a limiting step in the photocatalytic generation of H2 at this catalyst, while here a Pt wired photocatalysis system (CdS/H-3D-TiO2/Pt-wire) is designed to overcome this barrier. Without the application of potential bias, visible light photocatalytic hydrogen production rate of CdS/H-3D-TiO2/Pt-wire is 18.42 μmol cm?2 h?1, which is 11.2 times that of CdS/H-3D-TiO2 without Pt (1.64 μmol cm?2 h?1). The Pt wire acts as an electron super highway between the FTO substrate and H+ ions to evacuate the generated electrons to H+ ions and catalyze the reduction reaction and consequently generate H2 gas. This work successfully offers a novel direction for dramatic improvement in H2 generation efficiency in photocatalysis field.  相似文献   

20.
The viability of the photocatalytic hydrogen production is closely related to the performance and long term stability of the photocatalyst. In this work rGO/TiO2 composites have been synthetized with graphene oxide (GO) ratios from 1% to 10% and experimentally assessed towards hydrogen generation from methanol solutions. The performance of the composite with 2% of rGO (2 GT) has been compared to bare TiO2 working with 20% volume methanol solution. The hydrogen production initial rate showed similar values with both photocatalysts decreasing after about 24 h. Further analysis of the photocatalytic process at longer times showed the negative influence of hydrogen accumulation in the reaction system. Thus, an experimental procedure with argon purge was developed and the behavior of TiO2 and 2 GT photocatalysts was compared. It is concluded that TiO2 keeps its activity after 8 operation cycles while 2 GT performance reduces progressively. This can be attributed to the further reduction of GO and the increase of defects in its structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号