首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
介绍负载口独立控制系统的工作原理;根据负载的大小、方向及指令输出信号,确定负载口独立控制系统的工作模式。分析得出在不同工况下,防止气穴现象产生的最小阀芯开口面积比大小,为整个控制器的设计提供参考。  相似文献   

2.
将负载敏感技术与负载口独立控制技术结合起来,以负载口独立控制技术原理为基础,利用负载敏感技术的机液压差补偿方法,以电液比例插装阀为基本控制单元,设计了基于机液压差补偿的负载口独立控制系统,对其阀口节流损失特性进行分析,提出基于进、出油口开口度独立调节的节能控制方法,并与负载敏感系统的节能特性进行对比。分析结果表明:基于机液压差补偿的负载口独立控制系统的节能特性优于负载敏感系统,并且随着执行器两腔面积比的减小,节能效果越明显。  相似文献   

3.
曹剑  徐兵  孙军  杨华勇  王昊 《机床与液压》2006,(8):98-100,116
针对负载口独立控制系统中不同负载流量和负载压力工况时动态响应和稳态精度相差较大的问题,提出了基于静态工作点前馈补偿的控制算法,分析了在考虑速度敏感隋况下进油阀与出油阀液导的选取方法,证明了此算法能保证各种工况下的响应速度和抗干扰能力。  相似文献   

4.
曹晓明  姚静 《锻压技术》2021,46(7):157-165
以负载口独立控制负载模拟系统为研究对象,针对该系统工作过程中产生的多余力导致的系统模拟负载力精度下降的问题,通过机理建模的方法建立了该系统的各组成部分以及系统的整体数学模型,分析出主系统运动输出位移与负载模拟系统输出负载力之间的耦合关系,进一步基于解耦补偿原理计算出系统多余力的补偿环节.搭建试验平台进行多余力抑制控制试...  相似文献   

5.
关锋  季清华 《机床与液压》2023,51(1):183-188
针对传统掘进机截割部液压系统控制自由度低、背压高、灵活性差等问题,采用负载口独立控制技术对截割部升降油缸进行控制,实现升降油缸压力、速度独立控制。介绍截割部升降油缸负载口独立控制液压系统设计思路,提出了基于升降油缸2种工作状态的独立控制策略;其次,利用AMESim和MATLAB软件搭建了截割部机械-液压-控制联合仿真模型,通过对升降油缸伸出和缩回过程的阶跃控制仿真、正弦控制仿真以及工况切换控制仿真,验证了升降油缸负载口独立控制液压系统及其控制策略的有效性。  相似文献   

6.
针对传统挖掘机动臂液压系统能耗大、势能利用低等问题,以挖掘机动臂为研究对象,设计基于负载口独立控制的动臂液压系统。在主动型负载工况缩回工况下,对动臂液压系统进行了压力-流量特性分析,获得阀口开度与活塞杆速度的关系;采用机械动力学仿真软件ADAMS和液压系统仿真软件AMESim,分别建立传统动臂液压系统和基于负载口独立控制的动臂液压系统联合仿真模型,并对2种动臂液压系统在主动型负载工况缩回工况进行联合仿真分析。仿真结果表明:2种动臂液压系统都能获得较为线性的活塞杆运动速度,而且与传统动臂液压系统相比,基于负载口独立控制的动臂液压系统的势能利用率明显提高,提高了约44.3%。  相似文献   

7.
张伟  马越  林安明  徐文涛  姚辉 《机床与液压》2017,45(21):135-138
码垛机与粉煤灰砖压制成型机配套使用,广泛应用于砖坯压制成型后的码垛作业,码垛过程中出现定位精度低,码垛质量差,存在安全隐患等缺点,为改善这些缺点,采用负载口独立控制技术对码垛机气动位置伺服系统进行改进,对气缸两腔分别采用位移闭环和压力闭环控制,并且对垂直方向负载进行平衡,有效减小了定位误差,提高了码垛机的定位精度和响应速度,同时,使位移控制腔处于低压值。独立负载口控制有效地提高了码垛机的生产效率和能源利用率。  相似文献   

8.
针对抗流量饱和研究中传统负载敏感系统节流损失大、电液压差补偿控制难度高的问题,将负载口独立控制技术应用于负载敏感系统,设计一种新型抗流量饱和的负载口独立系统。建立该系统节能特性模型,并与传统负载敏感系统的节能特性进行对比。结果表明:该系统的效率优于传统负载敏感系统,当液压缸处于阻抗缩回工况时,该系统节能效果更明显,节能效率为15.97%。  相似文献   

9.
王磊 《机床与液压》2019,47(8):74-78
当运梁车行走液压系统采用转速感应阀控制时,发动机低转速会使负载敏感系统流量不饱和,从而直接导致执行机构速度受负载大小影响。针对此问题,提出使用独立流量分配系统的方法。利用AMESim软件对系统进行建模仿真,通过对比测试与仿真曲线,验证了仿真模型的准确性和系统原理的正确性。仿真结果表明:该系统能够实现发动机在不同转速下、开式液压系统的稳态响应,实现发动机和负载之间的功率匹配,对降低能源消耗具有积极意义。  相似文献   

10.
为研究柱塞泵的气穴现象与其允许的最高转速之间的关系,采用AMESim仿真软件来模拟实际工况。通过建立简化模型、设置参数、进行仿真和分析,可知产生气穴现象时柱塞泵临界转速为1200r/min,即柱塞泵正常工作允许的最高转速为1200r/min。  相似文献   

11.
大型风力机的不平衡载荷会使叶片断裂,造成事故从而减短其使用寿命。针对大型风力发电系统在高风速区的不平衡载荷问题,提出一种NMPC-PID的独立变桨载荷控制方法。非线性模型预测控制(NMPC)用于及时调整风机桨叶的桨距角,PID控制则用于消除塔架振动的影响。运用机制方法在仿真平台搭建风力发电系统模型,运用所提控制策略进行仿真实验,并在两种情况下与模型预测控制方法(MPC)进行对比,验证了所提控制策略的可行性与有效性。  相似文献   

12.
王帆 《机床与液压》2023,51(19):134-139
液压挖掘机由于上车回转平台转动惯量大、工作中高频次起制动,导致大量的制动动能转化为控制阀阀口热能浪费掉。为此,提出双马达主被动复合驱动挖掘机回转系统,主动系统采用阀口独立回路,应用泵阀复合、压力流量匹配控制策略抑制回转平台起动过程的节流和溢流损失,利用阀口独立回路多自由度控制的优点解决制动阶段转台冲击和反转问题;被动系统采用液压马达-蓄能器组合,回收利用回转平台制动动能;在空载制动过程中,通过增压缸向蓄能器补充油液。建立回转系统机电液联合仿真模型,并对所提系统的运行特性与能量特性进行分析。结果表明:满载和空载制动阶段蓄能器能量回收率分别为79%和72%,利用增压缸解决了蓄能器油液回收不足问题,较传统回转系统能耗降低54.3%。  相似文献   

13.
针对采用电液主动控制挤压油膜阻尼器控制有定心弹簧的转子系统振动问题进行了理论分析与数字仿真研究。提出了一种新型的动静压挤压油膜阻尼器HSFD。在已知无轴向回油槽深油腔HSFD油膜力近似解的基础上,以小孔节流为例,对其油膜力的特性进行了分析,进行了稳态特性和瞬态特性的讨论,研究了HSFD对转子系统的控制作用。仿真表明,HSFD明显改善了SFD系统中经常出现的双稳态现象,并且具有很好的减振效果。  相似文献   

14.
针对机械密封腔内流场在一定区域内会产生气穴的现象,建立密封腔的几何仿真模型。利用商业分析软件结合多相流模型对机械密封腔内流场的气穴现象进行数值模拟及优化,获得了机械密封腔内流场的气穴位置和分布情况。分析进口压力、转速对气穴产生的影响,并利用克里金(Kriging)插值方法对其组合进行优化。结果表明:在相同的初始条件下,不同冲洗液的进口压力和转速都对密封腔内气穴的产生具有促进或抑制作用;通过Kriging插值和误差分析,缩小了对气穴现象产生抑制的进口压力和转速组合的范围。  相似文献   

15.
刘伟 《机床与液压》2019,47(14):84-87
发动机-液压系统极限载荷控制是一种根据负载变化自动调节变量泵液压系统的智能电液控制技术。介绍极限载荷控制原理与策略,分析极限载荷控制中传统负载敏感和LUDV负载敏感系统流量调节原理与特性。以起重机卷扬系统为研究对象,试验验证了传统负载敏感系统极限载荷控制流量调节特性,为优化发动机-液压系统极限载荷控制策略提供参考。  相似文献   

16.
张延忠  兆海冰 《机床与液压》2017,45(14):125-126
机械驱动旋转支撑转盘传动链长、传动装置复杂、部件多、质量过大,在一些特殊的钻井设备上布置困难,而且影响主机的移运性能。针对上述问题设计了液压驱动的旋转支撑转盘,低速大扭矩马达安装在常规转盘的输入轴端,液压系统采用了负载敏感控制及电液比例控制方案,通过在司钻房远程控制,实现了对转速及扭矩的精确控制,有效地解决了转盘应用中存在的问题。  相似文献   

17.
负载敏感液压控制系统在多执行器复合工况下,液压泵容易出现流量饱和工况,使得系统的负载敏感特性较差。针对上述问题,设计一种混合型压力补偿液压控制系统,建立该系统的数学模型和AMESim仿真模型,进行理论和仿真分析。结果表明:混合型负载敏感压力补偿系统定差阀前置支路具有大流量优先特性,且液压泵出现流量饱和时,在满足流量优先的条件下,剩余流量能够按照比例进行分配,实现抗流量饱和。研究结果为负载敏感压力补偿系统的设计提供参考。  相似文献   

18.
黄宇  潘公宇  范方强 《机床与液压》2012,40(9):45-48,51
建立1/2车辆加速/制动系统模型,基于最优控制相关理论设计了系统的控制器,利用Matlab/Simulink软件对系统进行仿真。仿真结果表明:与被动空气悬架系统相比,应用最优控制策略的主动空气悬架系统在改善车辆加速/制动系统的舒适性及平顺性方面具有明显的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号