首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium (Pd) membranes are characterized by their high permselectivity to hydrogen and easy operation, and are promising devises for separating hydrogen from hydrogen-rich gases. The membranes are normally operated with atmospheric pressure at the permeate side. Instead of this common operation, hydrogen permeation through a Pd membrane under vacuum operation at the permeate side is investigated and compared with that under normal operation. In this study, two membrane operating temperatures (320 and 380 °C), four H2 partial pressure differences (2, 3, 4, and 5 atm) across the membrane, and four feed gases are considered. The results suggest that the vacuum operation can efficiently intensify the H2 permeation rate. The improvement in H2 permeation rate due to the vacuum operation can be increased up to 136%. The positive effect of the vacuum operation is especially pronounced when the gas mixtures are used as the feed gases, stemming from the effective attenuation of the concentration polarization. An increase in membrane temperature raises the H2 permeation rate, but its influence in enhancing the H2 permeation rate with the vacuum operation is not as significant as that without the vacuum one. It is found that the retardation effect of impurities on the mass transfer is always ranked as CO > CO2 > N2, regardless of with/without vacuum operation.  相似文献   

2.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   

3.
Hydrogen purification using palladium (Pd) membrane technology has been seen as a potential solution for producing pure hydrogen form hydrogen-rich gas. Compared to traditional practices of operating the permeate side of the membrane at atmospheric pressure, in this study, a vacuum is applied. The effects of various vacuum degrees applied to the permeate side of the Pd membrane are investigated and compared to the results under normal operation without a vacuum. The feed gas used for experiments consists of a mixture of hydrogen (70 vol%) and nitrogen (30 vol%). Three membrane operating temperatures (320, 350, and 380 °C), four pressure differences (2, 3, 4, and 5 atm) across the membrane, and four vacuum degrees (−15, −30, −45, and −53 kPa) applied to the permeate side are considered. For the three operating temperatures, the best improvements in the performance of hydrogen permeation are at 320 and 350 °C when a −53 kPa vacuum is applied, resulting in 79.4% and 79.1% improvements, respectively, compared to normal operations. Increasing temperatures leads to an increase in H2 permeation both with and without a vacuum; however, best performances of H2 permeation are observed in cases without a vacuum.  相似文献   

4.
This study uses a palladium membrane to separate hydrogen from an H2/CO2 (90/10 vol%) gas mixture. Three different operating parameters of temperature (320–380 °C), total pressure difference (2–3.5 atm), and vacuum degree (15–49 kPa) on hydrogen are taken into account, and the experiments are designed utilizing a central composite design (CCD). Analysis of variance (ANOVA) is also used to analyze the importance and suitability of the operating factors. Both the H2 flux and CO2 (impurity) concentration on the permeate side are the targets in this study. The ANOVA results indicate that the influences of the three factors on the H2 flux follow the order of vacuum degree, temperature, and total pressure difference. However, for CO2 transport across the membrane, the parameters rank as total pressure difference > vacuum degree > temperature. The predictions of the maximum H2 flux and minimum CO2 concentration by the response surface methodology are close to those by experiments. The maximum H2 flux is 0.2163 mol s?1 m?2, occurring at 380 °C, 3.5 atm total pressure difference, and 49 kPa vacuum degree. Meanwhile, the minimum CO2 concentration in the permeate stream is t 643.58 ppm with the operations of 320 °C, 2 atm total pressure difference, and 15 kPa vacuum degree. The operation with a vacuum can significantly intensify H2 permeation, but it also facilitates CO2 diffusion across the Pd membrane. Therefore, a compromise between the H2 flux and the impurity in the treated gas should be taken into account, depending on the requirement of the gas product.  相似文献   

5.
The effect of CO and CO2 on the performance and stability of Pd–Ag thin film membranes prepared by electroless plating deposition (EPD) was investigated, observing the presence of dissociation to carbon and oxygen which slowly diffuse in the membrane influencing also H2 permeability. The effect of the two carbon oxides was investigated both separately and combined in the 400–450 °C temperature range over long-term cumulative experiments (up to over 350 h) on a membrane that already worked for over 350 h in H2 or H2–N2 mixtures. An increase of the H2 permeation flux was observed feeding only CO2 in the range 10–20%. This effect was interpreted as deriving from the facilitated H2 flux caused from oxygen diffusion (deriving from CO2 dissociation) in the membrane. CO induces instead a partial inhibition on the H2 flux deriving from the negative effect of CO competitive chemisorption as well as C diffusion in the membrane, which overcome the positive effect associated to oxygen diffusion in the membrane. Carbon and oxygen diffuse through the membrane with a rate two order of magnitude lower than hydrogen, and recombinate at the permeate side forming CO, CO2 and CH4 which amount increases with time-on-stream. The effect is reversible and not associated with the creation of cracks or defects in the membrane, as supported by leak tests.  相似文献   

6.
In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol–gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600 °C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 × 10−7 mol m−2 s−1 Pa−1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Å. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600 °C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600 °C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.  相似文献   

7.
Combination of the reactions by means of membrane separation techniques are of interest. The CO2 methanation was combined with NH3 decomposition by in situ H2 separation through a Pd membrane. The CO2 methanation reaction in the permeate side was found to significantly enhance the H2 removal rate of Pd membrane compared to the use of sweep gas. The reaction rate of CO2 methanation was not influenced by H2 supply through the Pd membrane in contrast to NH3 decomposition in the retentate side. However, the CH4 selectivity could be improved by using a membrane separation technique. This would be caused by the active dissociated H species which might immediately react with adsorbed CO species on the catalysts to CH4 before those CO species desorbed. From the reactor configuration tests, the countercurrent mode showed higher H2 removal rate in the combined reaction at 673 K compared to the cocurrent mode but the reaction rate in CO2 methanation should be improved to maximize the perfomance of membrane reactor.  相似文献   

8.
This work comprises a study of hydrogen separation with a composite Pd-YSZ-PSS membrane from mixtures of H2, N2, CO and CO2, typical of a water gas shift reactor. The Pd layer is extended over a tubular porous stainless steel support (PSS) with an intermediate layer of yttria-stabilized-zirconia (YSZ). YSZ and Pd layers were incorporated over the PSS using Atmospheric Plasma Spraying and Electroless Plating techniques, respectively. The Pd and YSZ thickness values are 13.8 and 100 μm, respectively, and the Pd layer is fully dense. Permeation measurements with pure, binary and ternary gases at different temperatures (350–450 °C), trans-membrane pressures (0–2.5 bar) and gas composition have been carried out. Moreover, thermal stability of the membrane was also checked by repeating permeation measurements after several cycles of heating and cooling the system. Membrane hydrogen permeances were calculated using Sieverts' law, obtaining values in the range of 4·10−5–4·10−4 mol m−2 s−1 Pa−0.5. The activation energy of the permeance was also calculated using Arrhenius' equation, obtaining a value of 16.4 kJ/mol. In spite of hydrogen selectivity being 100% for all experiments, the hydrogen permeability was affected by the composition of feed gas. Thus, a significant depletion in H2 permeate flux was observed when other gases were in the mixture, especially CO, being also more or less significant depending on gas composition.  相似文献   

9.
The ability of (dimethyl siloxane) (PDMS) and SAPO 34 membrane modules to separate a H2/CO2 gas mixture was investigated in a continuous permeation system in order to decide if they were suitable to be coupled to a biological hydrogen production process. Permeation studies were carried out at relatively low feed pressures ranging from 110 to 180 kPa. The separation ability of SAPO 34 membrane module appeared to be overestimated since the effect concentration polarization phenomena was not taken into consideration in the permeation parameter estimation. On the other hand, the PDMS membrane was the most suitable to separate the binary gas mixture. This membrane reached a maximum CO2/H2 separation selectivity of 6.1 at 120 kPa of feed pressure. The pressure dependence of CO2 and H2 permeability was not considerable and only an apparent slight decrease was observed for CO2 and H2. The mean values of permeability coefficients for CO2 and H2 were 3285 ± 160 and 569 ± 65 Barrer, respectively. The operational feed pressure found to be more adequate to operate initially the PDMS membrane module coupled to the fermentation system was 180 kPa, at 296 K. In these conditions it was possible to achieve an acceptable CO2/H2 separation selectivity of 5.8 and a sufficient recovery of the CO2 in the permeate stream.  相似文献   

10.
A two-bed PSA purifier was developed to produce high purity hydrogen for fuel cell applications. Two types of hydrogen-rich mixtures produced from coal off-gas were used. Feed 1 consisted of a 99% H2 mixture (H2:CO:CO2:N2 = 99:0.1:0.05:0.85 vol.%) containing 0.1% CO while Feed 2 was a 95% H2 mixture (H2:CO:CO2:CH4:N2 = 95:0.3:0.1:0.05:4.55 vol.%) containing 0.3% CO. An increase in the P/F ratio and adsorption pressure led to an almost linear decrease in H2 recovery with increasing purity. However, a sharp drop in CO concentration occurred at a specific operating range in both feeds. The feed was purified to 1.1 ppm CO with 99.99+% H2 purity and 80.0% recovery under 6.5 bar and 0.15 P/F ratio while CO in Feed 2 could be reduced to 6.7 ppm with 99.96% H2 purity and 78.4% recovery. The PVSA process, which combined vacuum and purge steps, could improve recovery by about 10% compared to the PSA process.  相似文献   

11.
A 2D axisymmetric model is developed for a H2-permeable membrane reactor for methane CO2 reforming. The effect of catalyst bed volume on CH4 conversion and H2 permeation rate is investigated. The simulation results indicate that catalyst bed volume with a shell radius of 9 mm is optimal for a tubular Vycor glass membrane with a diameter of 10 mm and H2 permeance of 2x10−6 mol/m2/Pa/s. The concentration polarization at the retentate side and the accumulation of H2 at permeate side make it hard to extract the H2 production at the zone far from the membrane surface. Though increasing pressure at the retentate side enhances H2 permeation, CH4 conversion is even decreased due to unfavorable thermodynamics. And increasing sweep gas flow rate at permeate side benefits to both CH4 conversion and H2 permeation. This work highlights the importance of determining the optimal catalyst bed volume to match the membrane in the design of membrane reactors.  相似文献   

12.
This study investigated the effect of gases such as CO2, N2, H2O on hydrogen permeation through a Pd-based membrane −0.012 m2 – in a bench-scale reactor. Different mixtures were chosen of H2/CO2, H2/N2/CO2 and H2/H2O/CO2 at temperatures of 593–723 K and a hydrogen partial pressure of 150 kPa. Operating conditions were determined to minimize H2 loss due to the reverse water gas shift (RWGS) reaction. It was found that the feed flow rate had an important effect on hydrogen recovery (HR). Furthermore, an identification of the inhibition factors to permeability was determined. Additionally, under the selected conditions, the maximum hydrogen permeation was determined in pure H2 and the H2/CO2 mixtures. The best operating conditions to separate hydrogen from the mixtures were identified.  相似文献   

13.
The water-gas shift (WGS) catalytic membrane reactor (CMR) incorporating a composite Pd-membrane and operating at elevated temperatures and pressures can greatly contribute to the efficiency enhancement of several methods of H2 production and green power generation. To this end, mixed gas permeation experiments and WGS CMR experiments have been conducted with a porous Inconel supported, electroless plated Pd-membrane to better understand the functioning and capabilities of those processes. Binary mixtures of H2/He, H2/CO2, and a ternary mixture of H2, CO2 and CO were separated by the composite membrane at 350, 400, and 450 °C, 14.4 bar (Ptube = 1 bar), and space velocities up to 45,000 h−1. H2 permeation inhibition caused by reversible surface binding was observed due to the presence of both CO and CO2 in the mixtures and membrane inhibition coefficients were estimated. Furthermore, WGS CMR experiments were conducted with a CO and steam feed at 14.4 bar (Ptube = 1 bar), H2O/CO ratios of 1.1-2.6, and GHSVs of up to 2900 h−1, considering the effect of the H2O/CO ratio as well as temperature on the reactor performance. Experiments were also conducted with a simulated syngas feed at 14.0 bar (Ptube  = 1 bar), and 400-450 °C, assessing the effect of the space velocity on the reactor performance. A maximum CO conversion of 98.2% was achieved with a H2 recovery of 81.2% at 450 °C. An optimal operating temperature for high CO conversion was identified at approximately 450 °C, and high CO conversion and H2 recovery were achieved at 450 °C with high throughput, made possible by the 14.4 bar reaction pressure.  相似文献   

14.
In this work, H2 production via catalytic water gas shift reaction in a composite Pd membrane reactor prepared by the ELP “pore-plating” method has been carried out. A completely dense membrane with a Pd thickness of about 10.2 μm over oxidized porous stainless steel support has been prepared. Firstly, permeation measurements with pure gases (H2 and N2) and mixtures (H2 with N2, CO or CO2) at four different temperatures (ranging from 350 to 450 °C) and trans-membrane pressure differences up to 2.5 bar have been carried out. The hydrogen permeance when feeding pure hydrogen is within the range 2.68–3.96·10−4 mol m−2 s−1 Pa−0.5, while it decreases until 0.66–1.35·10−4 mol m−2 s−1 Pa−0.5 for gas mixtures. Furthermore, the membrane has been also tested in a WGS membrane reactor packed with a commercial oxide Fe–Cr catalyst by using a typical methane reformer outlet (dry basis: 70%H2–18%CO–12%CO2) and a stoichiometric H2O/CO ratio. The performance of the reactor was evaluated in terms of CO conversion at different temperatures (ranging from 350 °C to 400 °C) and trans-membrane pressures (from 2.0 to 3.0 bar), at fixed gas hourly space velocity (GHSV) of 5000 h−1. At these conditions, the membrane maintained its integrity and the membrane reactor was able to achieve up to the 59% of CO conversion as compared with 32% of CO conversion reached with conventional packed-bed reactor at the same operating conditions.  相似文献   

15.
Hydrogen separation through palladium-based membranes is one of the most promising technologies to produce H2 gas. The main purpose of this work is to comprehensively study the impact of different parameters on hydrogen diffusion flux (JH2) through a Pd–Ag membrane. The effect of implementing sweep gas on JH2 is investigated along with two methods of applying pressure difference, namely pressurized method, and vacuum method. Also, the effect of species mole fraction for three binary mixtures (H2/N2, H2/CO2, and H2/CO) is examined. A CFD model is developed and used to perform the study. Experimental data from the literature are used to validate the CFD model, and the results showed good agreement with the experimental data. The results revealed that implementing sweep-gas could significantly improve the hydrogen diffusion flux (by 25%) at the law-pressure difference. Moreover, it turns out that the vacuum method is more effective than the pressurized method, where it results in JH2 greater than the pressurized method by 15–36%. Furthermore, the CFD results showed that more hydrogen gas can be extracted from a binary mixture of H2/N2 (0.93 mol/m2.s) than of CO (0.90 mol/m2.s) and H2/CO2 (0.81 mol/m2.s).  相似文献   

16.
This study investigated the water-gas shift reaction in a bench-scale membrane reactor (M-WGS), where three supported Pd membranes of 44 cm in length and ca. 6 μm in thickness were used, reaching a total membrane surface area of 580.6 cm2. The WGS reaction was studied with the syngas mixture: 4.0% CO, 19.2% CO2, 15.4% H2O, 1.2% CH4 and 60.1% H2, under high temperature/pressure conditions: T = 673 K, pfeed = 20–35 bar(a), pperm = 15 bar(a), mimicking CO2 capture with co-production of H2 in a natural gas fired power plant. High reaction pressure and high permeation of Pd membranes allowed for near complete CO conversion and H2 recovery. Both the membranes and the membrane reactor demonstrated a long-term stability under the investigated conditions, indicating the potential of M-WGS to substitute conventional systems.  相似文献   

17.
The development of compact hydrogen separator based on membrane technology is of key importance for hydrogen energy utilization, and the Pd-modified carbon membranes with enhanced hydrogen permeability were investigated in this work. The C/Al2O3 membranes were prepared by coating and carbonization of polyfurfuryl alcohol, then the palladium was introduced through impregnation–precipitation and colloid impregnation methods with a PdCl2/HCl solution and a Pd(OH)2 colloid as the palladium resources, and the reduction was carried out with a N2H4 solution. The resulting Pd/C/Al2O3 membranes were characterized by means of SEM, EDX, XRD, XPS and TEM, and their permeation performances were tested with H2, CO2, N2 and CH4 at 25 °C. Compared with the colloid impregnation method, the impregnation–precipitation is more effective in deposition of palladium clusters inside of the carbon layer, and this kind of Pd/C/Al2O3 membranes exhibits excellent hydrogen permeability and permselectivity. Best hydrogen permeance, 1.9 × 10−7 mol/m2 s Pa, is observed at Pd/C = 0.1 wt/wt, and the corresponding H2/N2, H2/CO2 and H2/CH4 permselectivities are 275, 15 and 317, respectively.  相似文献   

18.
This study presents numerical studies of hydrogen production performance via water gas shift reaction in membrane reactor. The pre-exponential factor in describing the hydrogen permeation flux is used as the main parameter to account for the membrane permeance variation. The operating pressure, temperature and H2O/CO molar ratio are chosen in the 1–20 atm, 400–600 °C and 1–3 ranges, respectively. Based on the numerical simulation results three distinct CO conversion regimes exist based on the pre-exponential factor value. For low pre-exponential factors corresponding to low membrane permeance, the CO conversion approaches to that obtained from a conventional reactor without hydrogen removal. For high pre-exponential factor, high CO conversion and H2 recovery with constant values can be obtained. For intermediate pre-exponential factor range both CO conversion and H2 recovery vary linearly with the pre-exponential factor. In the high membrane permeation case CO conversion and H2 recovery approach limiting values as the operating pressure increases. Increasing the H2O/CO molar ratio results in an increase in CO conversion but decrease in H2 recovery due to hydrogen permeation driving force reduction. As the feed rate increases in the reaction side both the CO conversion and hydrogen recovery decrease because of decreased reactant residence time. The sweep gas flow rate has a significant effect on hydrogen recovery. Low sweep gas flow rate results in low CO conversion H2 recovery while limiting CO conversion and hydrogen recovery can be reached for the high membrane permeance and high sweep gas flow rate cases.  相似文献   

19.
Hydrogen separation from H2–N2 gas mixtures by means of high-permeance Pd membranes is an appropriate route to gain pure hydrogen for fuel cell applications. To figure out the mass transfer phenomena of H2 in membrane tubes, H2 permeation and recovery characteristics of two high-permeance Pd membranes are investigated. Four important factors influencing H2 permeation, namely, the H2 pressure difference, H2 concentration, the flow rate at the exit of the retentate side, and membrane temperature, are taken into account. The experimental results suggest that decreasing H2 concentration, flow rate, and temperature reduce the permeances of the membranes and H2 recovery, even though the H2 pressure difference is identical. The dimensionless permeance, a permeance ratio between H2–N2 gas mixture and pure H2 as feed gases, is used to evaluate the extent of concentration polarization. Within the investigated ranges of the four factors, the dimensionless permeances of the two membranes are in the ranges of 0.022–0.206 and 0.042–0.359, respectively, revealing that the concentration polarization diminishes the permeance of the membranes down to the level within two orders of magnitude. Nevertheless, over 46% of H2 is recovered.  相似文献   

20.
In this work, highly doped ceria with lanthanum, La0.5Ce0.5O2−δ (LDC), are developed as hydrogen separation membrane material. LDC presents a mixed electronic and protonic conductivity in reducing atmosphere and good stability in moist CO2 environment. LDC separation membranes with asymmetrical structure are fabricated by a cost-saving co-pressing method, using NiO + LDC + corn starch mixture as substrate and LDC as top membrane layer. Hydrogen permeation properties are systemically studied, including the influence of operating temperature, hydrogen partial pressure in feed stream and water vapor in both sides of the membrane on hydrogen permeating fluxes. Hydrogen permeability increases as the increasing of temperature and hydrogen partial pressure in feed gas. Using 20% H2/N2 (with 3% of H2O) as feed gas and dry high purity argon as sweep gas, an acceptable flux of 2.6 × 10−8 mol cm−2 s−1 is achieved at 900 °C. The existing of water in both sides of membrane has significant effect on hydrogen permeation and the corresponding reasons are analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号