首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Biohydrogen holds the promise for a substantial contribution to the future renewable energy demands. It seems particularly suitable for relatively small-scale, decentralized systems, integrated with agricultural and industrial activities or waste processing facilities. Biohydrogen is considered as an important key to a sustainable world power supply and is currently being seen as the versatile fuel of the future, with the potential to replace fossil fuels. It has the key prospective to become the ideal means among the range of renewable H2 production technologies presently existing. This review attempts to delineate the prospects and potentials of biohydrogen as renewable energy resource.  相似文献   

2.
The current study focuses on a comprehensive review of the pilot scale production of biohydrogen and various factors affecting the design experiments. Biohydrogen is a clean energy carrier that can be used as a potential alternative to fossil fuels. Biohydrogen as a fuel has several advantageous attributes, including; carbon-neutral or carbon-zero nature, easy renewability, eco-efficient productivity (via biological routes), eco-friendly conversion, and the highest energy content among all existing fuels. Pilot-scale production of biohydrogen is limited because it requires a better understanding of the possible interactions involved in the process. In this review, biohydrogen production on various types of reactors such as stirred tank reactors, packed bed reactors, fluidized bed reactors, trickling filter reactors, etc., have been discussed. However, biohydrogen production has been mostly studied on small scale, the most challenging issue concerning large-scale production of biohydrogen is its relatively high cost over fuels from fossil owing to high feedstock and manufacturing costs. Therefore, cost-effective and eco-friendly biohydrogen production technologies should be necessarily developed and continuously improved to make this biofuel more competitive over its counterpart. In comparison with fossil fuels, biohydrogen has a high energy yield and is highly renewable. It can fulfill the future demand as a transport fuel.  相似文献   

3.
Global research is moving forward in developing biological production of hydrogen (biohydrogen) as a renewable energy source to alleviate stresses due to carbon dioxide emissions and depleting fossil fuels resource. Biohydrogen has the potential to replace current hydrogen production technologies relying heavily on fossil fuels through electricity generation. While biohydrogen research is still immature, extensive work on laboratory- and pilot-scale systems with promising prospects has been reported. This work presents a review of advances in biohydrogen production focusing on production pathways, microbiology, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.  相似文献   

4.
Hydrogen is an attractive and clean source of energy with a high energy content and environmentally friendly production using green power. Hydrogen is therefore considered to be one of the future alternatives to fossil fuels that can limit the damage done by climate change. A dynamic GTAP model with LCA method is utilized herein in this investigation to forecast the development of the hydrogen supply chain and CO2 emissions in Japan. The supply chain incorporates six hydrogen-related industries – biohydrogen, steam reforming, electrolysis, hydrogen fuel cell vehicles (HFCV), hydrogen fuel cells (HFC), and hydrogen fueling stations.  相似文献   

5.
The depletion of non-renewable energy resources such as fossil fuels urge the human society to concentrate more on renewable energy including production of biological hydrogen (H2) from algae. Biological hydrogen or biohydrogen is one of the cleanest and efficient alternate energy sources for human needs. It is a well-known fact that hydrogenase (H2ase) will work in anoxic condition which is the key enzyme in H2 generation from photosynthetic algae or advanced plants. Keeping in view the significance of anoxic condition, the present study deals with screening of three oxygen scavengers/removers such as sodium sulfite (Na2SO3), sodium metabisulfite (Na2S2O5) and sodium dithionite (Na2S2O4) individually along with universal tris-acetate-phosphate (TAP) medium for improvement of biohydrogen production in green alga Chlorococcum minutum (C. minutum) under in vitro conditions. To the best of our knowledge, for the first time improvement in hydrogen production was achieved using sodium sulfite and sodium metabisulfite individually with algal cultures. Efficient photobiological H2 production was observed at 24 h in C. minutum in the presence of all the three oxygen scavengers when compared to untreated samples via limiting the oxygen levels but output was more with sodium sulfite treatment. Particularly 0.8 mM Na2SO3 is best for enhancement of H2 production at 24 h when compared to other two scavengers and this may be due to high oxidation state and more electron negativity of this compound. Apart from augmentation in H2 production in this species, present screening may also be helpful for researchers working in the area of biological H2 generation.  相似文献   

6.
Conventional energy technologies are not environmentally friendly, are not renewable, and also the cost of using fossil and nuclear fuels will go higher and higher (anecdotal evidence suggests that consumers will be paying three times their current bill 5 years from now). Therefore, renewable energy sources will play important roles in electricity generation. This paper highlights the advantages of renewable technologies, like future prospects for the poor population, being environmentally friendly, and also available in abundance. This paper points outs the factors seeking hydrogen energy and fuel cell technology to eradicate environmental disasters. This paper is significant as it looks into optimal utilization of renewable energy sources with major emphasis on H2 optimization and fuel cells application utilizing cogeneration technology. This paper discusses the multiple hydrogen production pathways from different sources, including renewable and nonrenewable sources, H2 safety, and also barriers to use of hydrogen energy. This paper recommends different types of quantitative and qualitative methods for optimal energy planning, and different types of fuel cells are also discussed. This paper explains a hybrid system inclusive of renewable energy, with its types and benefits. Finally, this paper concludes that Australia could switch from conventional fossil fuel technology to hybrid energy inclusive of renewable energy.  相似文献   

7.
Hydrogen production by dark fermentation (DF) from wastewater, food waste, and agro-industrial waste combines the advantages to be renewable, sustainable and environmentally friendly. But this attractive process involves a three-phase gas-liquid-solid system highly sensitive to mixing conditions. However, mixing is usually disregarded in the conventional strategies for enhancing biohydrogen productivity, even though H2 production can be doubled, e.g. versus of reactor design (0.6–1.5 mol H2/mol hexose). The objective of this review paper is, therefore, to highlight the key effects of mixing on biohydrogen production among the abiotic parameters of DF. First, the pros and cons of the different modes of mixing in anaerobic digesters are described. Then, the influence of mixing on DF is discussed using recent data from the literature and theoretical analysis, focusing on the multiphase and multiscale aspects of DF. The methods and tools available to quantify experimentally the role of mixing both at the local and global scales are summarized. The 0-D to 3-D strategies able to implement mixing in fermentation modeling and scale-up procedures are examined. Finally, the perspectives in terms of process intensification and scale-up tools using mixing optimization are discussed with the issues that are still to be solved.  相似文献   

8.
For solid oxide fuel cells (SOFCs), biohydrogen is an ideal fuel, which introduces a clean renewable energy source to a highly efficient energy conversion technology with minimum complications. The performance of a SOFC working with biohydrogen, and the effects of fuel composition, working temperature, load, and air utilization are less well understood. In this study a comprehensive numerical model was employed to investigate the biohydrogen fueled SOFC in different working conditions. Direct electrochemical oxidation of H2 and CO and water gas shift reaction (WGSR) were considered in the model. An experimental set up was built to verify the simulation results. Results from the numerical model were validated against experimental polarization curves and cell temperature measurements. The results showed how different parameters affect the performance of a biohydrogen SOFC and how different working conditions can be selected to meet certain criteria.  相似文献   

9.
The world is facing serious climate change caused in part by human consumption of fossil fuel. Therefore, developing a clean and environmentally friendly energy resource is necessary given the depletion of fossil fuels, the preservation of the earth's ecosystem and self-preservation of human life. Biological hydrogen production, using dark fermentation is being developed as a promising alternative and renewable energy source, using biomass feedstock. In this study, beverage wastewater and agricultural waste were examined as substrates for dark fermentation to produce clean biohydrogen energy.  相似文献   

10.
Global research is moving forward in developing hydrogen as a renewable energy source in order to alleviate concerns related to carbon dioxide emissions and depleting fossil fuels resources. Biohydrogen has the potential to replace current hydrogen production technologies relying heavily on fossil fuels. Batch and continuous systems employing pure mesophiles and thermophiles isolates and co-cultures of isolates have been investigated. The co-cultures of the isolates achieved better results than mono-cultures of the isolates with respect to different parameters. This paper presents a critical review of the literature reporting on fermentative biohydrogen production by pure cultures of bacteria in different systems. Synergies between different types of bacteria, i.e. strict and facultative, and a comparison between mono- and co-cultures, types of feedstocks, and preferred feedstocks for mono- and cultures are outlined.  相似文献   

11.
Vehicular Pollution and environmental degradation are on the rise with increasing vehicles and to stop this strict regulation have been put on vehicular emissions. Also, the depleting fossil fuels are of great concern for energy security. This has motivated the researchers to invest considerable resources in finding cleaner burning, sustainable and renewable fuels. However renewable fuels independently are not sufficient to deal with the problem at hand due to supply constraints. Hence, advanced combustion technologies such as homogeneous charge compression ignition (HCCI), low-temperature combustion (LTC), and dual fuel engines are extensively researched upon. In this context, this work investigates dual fuel mode combustion using a constant speed diesel engine, operated using hydrogen and diesel. The engine is operated at 25, 50 and 75% loads and substitution of diesel energy with hydrogen energy is done as 0, 5, 10 and 20%. The effect of hydrogen energy share (HES) enhancement on engine performance and emissions is investigated. In the tested range, slightly detrimental effect of HES on brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) is observed. Comparision of NO and NO2 emissions is done to understand the non-thermal influence of H2 on the NOx emissions. Hence, HES is found beneficial in reducing harmful emissions at low and mid loads.  相似文献   

12.
In this paper, the modern biomass-based transportation fuels such as fuels from Fischer–Tropsch synthesis, bioethanol, fatty acid (m)ethylester, biomethanol, and biohydrogen are briefly reviewed. Here, the term biofuel is referred to as liquid or gaseous fuels for the transport sector that are predominantly produced from biomass. There are several reasons for bio-fuels to be considered as relevant technologies by both developing and industrialized countries. They include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The term modern biomass is generally used to describe the traditional biomass use through the efficient and clean combustion technologies and sustained supply of biomass resources, environmentally sound and competitive fuels, heat and electricity using modern conversion technologies. Modern biomass can be used for the generation of electricity and heat. Bioethanol and biodiesel as well as diesel produced from biomass by Fischer–Tropsch synthesis are the most modern biomass-based transportation fuels. Bio-ethanol is a petrol additive/substitute. It is possible that wood, straw and even household wastes may be economically converted to bio-ethanol. Bio-ethanol is derived from alcoholic fermentation of sucrose or simple sugars, which are produced from biomass by hydrolysis process. Currently crops generating starch, sugar or oil are the basis for transport fuel production. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Biodiesel is a renewable replacement to petroleum-based diesel. Biomass energy conversion facilities are important for obtaining bio-oil. Pyrolysis is the most important process among the thermal conversion processes of biomass. Brief summaries of the basic concepts involved in the thermochemical conversions of biomass fuels are presented. The percentage share of biomass was 62.1% of the total renewable energy sources in 1995. The reduction of greenhouse gases pollution is the main advantage of utilizing biomass energy.  相似文献   

13.
This study analyzes how advances in clean energy production technology have facilitated related economic development and intensified competition between clean energy sources and fossil fuels. A forecasting model, the Taiwan general equilibrium model–Clean Energy (TAIGEM-CE), is adopted to elucidate the role of wind, solar, tidal current, geothermal, algal biodiesel, biohydrogen, hydrogen fuel cell, biodiesel and bioethanol. Baseline results indicate that biohydrogen, hydrogen fuel cell, biofuels and wind perform satisfactorily when external support is unavailable. Additionally, strong governmental investment in clean energies significantly contributes to development of biodiesel, wind, biohydrogen and hydrogen fuel cell sectors. Results of this study provide feasible means of allocating resources to achieve a smooth transition to a clean energy economy, in which biohydrogen and fuel cell will play a prominent role.  相似文献   

14.
Renewable power-to-fuel (PtF) is a key technology for the transition towards fossil-free energy systems. The production of carbon neutral synthetic fuels is primarily driven by the need to decouple the energy sector from fossil fuels dependance which are the main source of environmental issues. Hydrogen (H2) produced from water electrolysis powered by renewable electricity and direct carbon dioxide (CO2) captured from the flue gas generated by power plants, industry, transportation, and biogas production from anaerobic digestion, are used to convert electricity into carbon-neutral synthetic fuels. These fuels function as effective energy carriers that can be stored, transported, and used in other energy sectors (transport and industry). In addition, the PtF concept is an energy transformation that is capable of providing services for the balancing of the electricity grid thanks to its adaptable operation and long-term storage capacities for renewable energy surplus. As a consequence, it helps to potentially decarbonize the energy sector by reducing the carbon footprint and GHG emissions. This paper gives an overview on recent advances of renewable PtF technology for the e-production of three main hydrogen-based synthetic fuels that could substitute fossil fuels such as power-to-methane (PtCH4), power-to-methanol (PtCH3OH) and power-to-ammonia (PtNH3). The first objective is to thoroughly define in a clear manner the framework which includes the PtF technologies. Attention is given to green H2 production by water electrolysis, carbon capture & storage (CCS), CO2 hydrogenation, Sabatier, and Haber Bosch processes. The second objective is to gather and classify some existing projects which deal with this technology depending on the e-fuel produced (energy input, conversion process, efficiency, fuel produced, and application). Furthermore, the challenges and future prospects of achieving sustainable large-scale PtF applications are discussed.  相似文献   

15.
Biohydrogen production from dairy wastewater with subsequent biogas purification by hollow fiber membrane module was investigated in this study. The purified and not purified (raw) biohydrogen were used as fuel in polymer electrolyte membrane (PEM) fuel cell. Furthermore, the effect of CO2 on the performance of PEM fuel cell was evaluated considering cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization curves. The maximum H2 production rate was 0.015 mmol H2/mol glucose and the biohydrogen concentration in biogas was ranged 33%–60% (v/v). CO2/H2 selectivity decreased with increasing pressure and maximum selectivity was obtained as 4.4 at feed pressure of 1.5 bar. The electrochemical active surface (EASA) areas were decreased with increasing CO2 ratio. The maximum power densities were 0.2, 0.08 and 0.045 W cm−2 for 100%, 80% and 60% (v/v) H2, respectively. The results indicated that integrated PEM fuel cell/biogas purification system can be used as a potential clean energy sources during acidogenic biohydrogen production from dairy wastewater.  相似文献   

16.
The hydrogen (H2) economy has been recognized globally from a socio-economic, and environmental viewpoint. Hydrogen can be produced using technologies such as electrolysis, thermochemical, photoelectrochemical, and biological methods. Biological methods help in waste management and energy production simultaneously. To make the biohydrogen process economic and viable at a commercial scale there is a need to utilize renewable raw materials efficiently. Improved reactor designs and advanced genetic improvements using metabolic pathways developments are mandated to improve microbial adaptation to the harsh process conditions. Finally, this review aimed to fill the void among technical and applied research and review the current advances in genetic engineering and metabolic pathway developments to improve H2 productivity.  相似文献   

17.
Hydrogen is a renewable energy carrier that is one of the most competent fuel options for the future. The majority of hydrogen is currently produced from fossil fuels and their derivatives. These technologies have a negative impact on the environment. Furthermore, these resources are rapidly diminishing. Recent research has focused on environmentally friendly and pollution-free alternatives to fossil fuels. The advancement of bio-hydrogen technology as a development of new sustainable and environmentally friendly energy technologies was examined in this paper. Key chemical derivatives of biomass such as alcohols, glycerol, methane-based reforming for hydrogen generation was briefly addressed. Biological techniques for producing hydrogen are an appealing and viable alternative. For bio-hydrogen production, these key biological processes, including fermentative, enzymatic, and biocatalyst, were also explored. This paper also looks at current developments in the generation of hydrogen from biomass. Pretreatment, reactor configuration, and elements of genetic engineering were also briefly covered. Bio-H2 production has two major challenges: a poor yield of hydrogen and a high manufacturing cost. The cost, benefits, and drawbacks of different hydrogen generation techniques were depicted. Finally, this article discussed the promise of biohydrogen as a clean alternative, as well as the areas in which additional study is needed to make the hydrogen economy a reality.  相似文献   

18.
Biomass has been widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. The abundance of biomass ranks it as the third energy resource after oil and coal. The reduction of imported forms of energy, and the conservation of the limited supply of fossil fuels, depends upon the utilization of all other available fuel energy sources. Energy conversion systems based on the use of biomass are of particular interest to scientists because of their potential to reduce global CO2 emissions. With these considerations, gasification methods come to the forefront of biomass-to-energy conversions for a number of reasons. Primarily, gasification is more advantageous because of the conversion of biomass into a combustible gas, making it a more efficient process than other thermochemical processes. Biomass gasification has been studied widely as an efficient and sustainable technology for the generation of heat, production of hydrogen and ethanol, and power generation. Renewable energy can have a significant positive impact for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive, a challenge that renewable energy can attempt to correct by facilitating economic and social development in communities. This paper aims to take stock of the latest technologies for gasification.  相似文献   

19.
The excessive burning of fossil fuels is one of the main sources of emissions of carbon dioxide (CO2) which causes the greenhouse effect. The effect could be resulted in climate changes and disorder of our ecosystem. Thus, bioenergy developments will play important roles to help decreasing CO2 emission for better global environment in the future. In the domain of biohydrogen production, biomass including: cellulose, wastewater and agricultural waste are the main resources to maintain feedstock demand. Developing sustainable energy with sustainable feedstock sources like sugary wastewater by using two-stage biomass-derived gas production system might bring great economic profits to business. In this study, the system will be chosen to testify its sustainability when producing the sugary wastewater to renewable source energy. The commercial potential analysis is derived from the internal rate of return (IRR). The novelty finding of this study, as the result showed, found out that the energy recovery is 1.12 times higher than single stage. According to the IRR analysis with the calculated years of 15 years, the IRR is 32.47% that means the system can payback within 3.19 years. Therefore, the feasibility of commercialization potential of biomass-derived gas production system can be verified.  相似文献   

20.
Cotton straws are one of the most produced agricultural wastes in Turkey and getting attention by not being consumed as animal feed or an industrial stock and having a huge potential in clean energy production. In this study, different pretreatment methods for the conversion of cotton straw to sugar then biohydrogen and biomethane production from cotton straw were examined. The energy potential of cotton straw in case of an evaluation of these biomass residues was also determined using fuel cell technology. Acid pretreatment provided the highest yield in biogas formation as well as sugar extraction from the raw sample. The highest biohydrogen and biomethane production were obtained as 33 mL H2/g VS and 83 mL CH4/g VS, respectively. Concomitantly, the maximum power peaks in PEM fuel cell studies were observed as 0.45 W/cm2 and 0.23 W/cm2 with current densities of 1.086 A/cm2 and 0.522 A/cm2 when the fuel cell was fed with pure H2 and biogas, respectively. This suggested that acid pretreatment is more suitable for cotton straw management in sustainable and renewable ways and the results demonstrated that PEM fuel cell is a promising clean technology for energy generation from cotton straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号