首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the hydrogen production performance of microreactors, the selective laser melting method was proposed to fabricate the porous metals as catalyst supports with different pore structures, porosities, and materials. The influence of the porous structures on the molecule distribution after passing through the porous metals was analyzed by molecular dynamics simulation. The developed porous metals were then used as catalyst supports in a methanol steam reforming microreactor for hydrogen production. Our results show that the porosity of the porous metal had significantly influence on the catalyst infiltration and the reaction process of hydrogen production. A lower degree of catalyst infiltration of the porous metal was obtained with lower porosity. A copper layer-coated stainless-steel porous metal with a staggered structure and gradient porosity of 80%–60% exhibited much larger methanol conversion and H2 flow rate due to its better heat and mass transfer characteristic. Methanol conversion and H2 flow rates could reach 97% and 0.62 mol/h, respectively. Finally, it was found that the experimental results were in good agreement with the simulation results.  相似文献   

2.
To improve hydrogen production (HP) performance of regular-porous structure (RPS), a columnar RPS with small specific surface area and high superficial area is developed. A numerical simulation model of regular-porous stainless steel structure (RPSSS) is established. Subsequently, heat transfer performance, pressure loss, temperature, methanol concentration, H2 concentration distributions and HP performance of the columnar RPSSS with small specific surface area and high superficial area and the body-centered cubic RPSSS with high specific surface area and small superficial area are compared. Then, temperature, methanol concentration, H2 concentration distributions and HP performance of axial and longitudinal size-enlarged columnar RPSSSs are studied. The results show that compared to the body-centered cubic RPSSS, the columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. Especially in the condition of 300 °C wall temperature and 12 mL/h methanol-water mixture injection rate (MWMIR), the methanol conversion, H2 flow rate and CO selectivity of the columnar RPSSS are increased by 12.3%, 9.24% and 30%, respectively, indicating that the superficial area of RPSSS is more important for its HP performance compared to its specific surface area. Compared to the longitudinal size-enlarged columnar RPSSS, the axial size-enlarged columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. This research work provides a new method for the optimization of hydrogen production reaction support (HPRS).  相似文献   

3.
Ceramic is an ideal material for preparing micro-channel catalyst supports with their characteristics of high temperature resistance, corrosion resistance and mechanical strength. High aspect ratio micro-channel structure has the advantages of large specific surface area, strong mass and heat transfer performance and high material utilization. However, ceramic materials are hard and brittle, and it is difficult to fabricate micro-channel structures with aspect ratio more than 1.5:1 by traditional processing methods. In this paper, a cutting method of large diameter diamond wire sawing was proposed. The micro-channels with width of 520 μm and aspect ratio of more than 4:1 was successfully fabricated by this method. Furthermore, the integrity of the micro-channel structure processed by diamond wire sawing was analyzed. And than the effect of surface morphology in different processing parameters on the catalyst loading performance were studied. The catalyst loading strength of ceramic slices with different surface morphology was tested. Finally, the ceramic micro-channel array was used as the catalyst support in micro-reactor for hydrogen production via methanol steam reforming (MSR). The methanol conversion rate and H2 production rate could reach 87.8% and 74.6 mmol/h, respectively under GHSV 12600 ml/g·h at 300 °C. The experimental results show that the large-diameter diamond wire sawing technology can be used to process ceramic microchannels with high aspect ratio; using ceramic microchannel arrays as catalyst supports in hydrogen production can obtain better reaction performance; the feasibility of ceramic materials were broadened as microchannel catalyst supports.  相似文献   

4.
To improve hydrogen production performance of reforming, a plate-type microchannel carrier plate with a ridge structure was designed based on the mixing effect. The mixing effect of the ridge structure on the hydrogen production performance of reforming was analyzed. Then the effects of geometric parameters (shape, size, spacing, and tilt angle) of the ridge structure on heat, mass transfer, and the hydrogen production performance of the reforming process were modelled and simulated. Finally, data analysis and structural optimisation of microchannels with the ridge structure were conducted via methanol steam reforming hydrogen production experiments. The experimental results show that the trapezoidal ridge structure microchannel (T-type0) achieved the best hydrogen production performance, whose methanol conversion rate was 60.8%, under the gas hourly space velocity of 48,757 mL/(g&h). Especially compared with the ordinary rectangular microchannel structure (O-type0), the methanol conversion rate of the trapezoidal ridge structure microchannel increased by 25.2%. Moreover, the pressure drop of this microchannel did not increase significantly, indicating that the structure did not significantly increase the pressure drop loss while enhancing the heat and mass transfer. Therefore, the ridge structure proposed in this paper can effectively improve heat and mass transfer performance and the hydrogen production efficiency of the microchannel.  相似文献   

5.
In this study, a laser micro-milling technique was introduced into the fabrication process of surface microchannels with different geometries and dimensions on the porous copper fiber sintered felts (PCFSFs). The PCFSFs with surface microchannels as catalyst supports were then used to construct a new type of laminated methanol steam reforming microreactor for hydrogen production. The microstructure morphology, pressure drop, velocity and permeability of PCFSF with surface microchannels were studied. The effect of surface microchannel shape (rectangular, stepped, and polyline) and catalyst loading amount on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCFSF with rectangular microchannels demonstrated a lower pressure drop, higher average velocity and higher permeability compared to the stepped and polyline microchannel. Furthermore, the PCFSF with rectangular microchannels also exhibited the highest methanol conversion and H2 flow rate. The best reaction performance of methanol steam reforming microreactor for hydrogen production was obtained using PCFSF with rectangular microchannels when 0.5 g catalyst was loaded.  相似文献   

6.
A 95 mm × 40 mm × 15 mm compact reactor for hydrogen production from methanol‐steam reforming (MSR) is constructed by integrating a vaporizer, reformer, and combustor into a single unit. CuO/ZnO/Al2O3 is used as the catalyst for the MSR while the required heat is provided using Platinum (Pt) ‐catalytic methanol combustion. The reactor performance is measured using three reformer designs: patterned micro‐channel; inserted catalyst layer placed in a single plain channel; and catalyst coated directly on the bottom wall of single plain channel. Because of longer reactant residence time and more effective heat transfer, slightly higher methanol conversion can be obtained from the reformer with patterned microchannels. The experimental results show that there is no significant reactor performance difference in methanol conversion, hydrogen (H2) production rate, and carbon monoxide (CO) composition among these three reformer designs. These results indicated that the flow and heat transfer may not play important roles in compact size reactors. The reformer design with inserted catalyst layer provides convenience in replacing the aged catalyst, which may be attractive in practical applications compared with the conventional packed bed and wall‐coated reformers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, the porous Cu-Al fiber sintered felt (PCAFSF) was fabricated by low temperature solid-phase sintering method. The laminated PCAFSF as the catalyst support was used for cylindrical methanol steam reforming microreactor for hydrogen production. The two-layer impregnation method was employed to coat the Cu/Zn/Al/Zr catalyst on the PCAFSF. The material composition, specific surface area and catalyst loading of PCAFSF were also measured. The effect of the fiber material, surface morphology and porosity on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCAFSF demonstrated much higher methanol conversion and H2 flow rate compared to the porous Cu fiber sintered felt (PCFSF) and porous Al fiber sintered felt (PAFSF) having the same porosity. Furthermore, the rough PCAFSF showed much higher methanol conversion and H2 flow rate compared to the smooth PCAFSF. In case of the PCAFSF, the methanol conversion and H2 flow rate were increased with the decrease of Cu fiber weight and the increase of Al fiber weight. The best reaction performance of microreactor for hydrogen production was obtained using the three layer PCAFSFs with 80% porosity and 1.12 g Cu fiber/1.02 g Al fiber.  相似文献   

8.
The entire experiments were conducted for microchannel methanol steam reforming, by which, the selection of catalyst, the operating parameters and the configuration of microchannels were discussed thoroughly. It was found that the higher the Cu concentration is, the more the corresponding active surface area of Cu will be, thereby improving the catalytic activity. The Cu-to-Zn ratio in Cu/ZnO/Al2O3 catalyst should be set at 1:1. The impacts of reaction temperature, feed flow rate, mixture temperature, and H2O-to-CH3OH molar ratio on the methanol conversion rate were also revealed and discussed. Characteristics of micro-reactors with various microchannels, including that 20 mm and 50 mm in length, as well as non-parallel microchannels, were investigated. It was found that the increase of microchannel length can improve the methanol conversion rate significantly. Besides, non-parallel microchannels help to maintain flow and temperature distribution uniformity, which can improve the performance of micro-reactor. In the present experiments, the presence of CO was under the condition that the methanol conversion rate was above 70%.  相似文献   

9.
To obtain the flexible microreactor for potential application in constrained space, a novel flexible tubular microreactor was designed by using a corrugated shell and a high porosity porous copper fiber rod (PCFR) as catalyst support. The effect of placement position, bending direction, and bending angle on reaction performance of flexible tubular microreactor was investigated. Then, the stability of flexible tubular microreactor was further evaluated. The experimental results showed that the placement position and bending direction had a significant influence on the reaction performance of flexible tubular microreactor. Methanol conversion of flexible tubular microreactor with the vertical placement was 6.67% higher than that with horizontal placement. Higher methanol conversion and H2 flow rate were obtained when the microreactor bent along the vertical direction. The reaction performance of flexible tubular microreactor was found to decrease as the bending angle increased, and the methanol conversion decreased by around 14.07% with a bend of 90°. When the flexible tubular microreactor was horizontal placed with a bend of 60° in the vertical direction, the reaction performance of microreactor was not changed little after 20 cyclic bending. After continuous bending for 10 h, the methanol conversion and H2 flow rate of flexible tubular microreactor were 70.58% and 0.88 mol/h, showing good reaction performance.  相似文献   

10.
Hydrogen production by steam reforming of methanol was studied over several Cu/SAB-15-based nanocatalysts in a parallel-type microchannel reactor. The catalysts were prepared through impregnation method and XRD, BET, FT-IR, FE-SEM, TEM, H2-TPR and TGA techniques were used to characterize surface and structural properties of the synthesized catalysts. The effects of reaction temperature, WHSV and S/C molar ratio on the methanol conversion and selectivities of the gaseous products were studied. Then, effects of the metallic promoters were investigated to improve performance of the catalysts. It was revealed that ZnO and CeO2 promoters have positive effects on decreasing CO selectivity and ZrO2 promotes methanol conversion. Furthermore, ZrO2 and CeO2 were declared to improve stability of the catalyst. Among the evaluated catalysts, Cu/ZnO/CeO2/ZrO2/SBA-15 can provide optimal methanol conversion with low CO concentration in the gaseous products. For this catalyst, the methanol conversion and hydrogen selectivity reached 95.2% and 94.6%, respectively.  相似文献   

11.
A microchannel reactor with a porous surface catalyst support has been applied to methanol steam reforming (MSR) for hydrogen production. The fluid flow, heat transfer, and hydrogen production efficiency of the microchannel reactor are significantly affected by the fabricated porous surface support, such as the pore sizes and their distributions. This paper presents a novel microchannel reactor with a gradient porous surface as the reaction substrate to enhance the performance of the microreactor for hydrogen production. Numerical modeling of the gradient porous surface is developed based on fractal geometry, and three different types of porous surfaces as the catalyst supports (two gradient porous surfaces and one uniform pore-size surface) are investigated. The fluid flow and heat transfer characteristics of these three types of microchannel reactors are studied numerically, and the results showed that the microreactor with a positive gradient pore sized surface exhibited relatively better overall performance. Experimental setups and tests were performed and the results validate that the microchannel reactor with a positive gradient porous surface can increase the heat transfer performance by up to 18% and can decrease the pressure drop by up to 8% when compared to a microreactor with a uniform pore sized surface. Hydrogen production experiments demonstrated that the microreactor with positive gradient pore sizes has the highest methanol conversion rate of 56.3%, and this rate is determined to be 6% and 9% higher than that of microreactors with reverse gradient porous surfaces and uniform pore sized surface, respectively.  相似文献   

12.
A mathematical model of the plate-fin heat exchanger filled with catalyst (CFPFHX) is established to investigate the continuous cooling process coupled with ortho-para hydrogen conversion at 42–70 K. The flow and heat transfer performance and the efficiency of ortho-para hydrogen conversion in the CFPFHX are quantitatively evaluated, and the effects of the structural parameters on the flow and heat transfer coupled with ortho-para hydrogen conversion are analyzed. The results show that the Elovich model is the best existing kinetic models of ortho-para hydrogen conversion with an average relative deviation of 1.8%. The Colburn heat transfer factor (j factor) of the hot side of the CFPFHX is 4.3 times that of the plate-fin heat exchanger (PFHX), and the thermal enhancement factor (TEF) of the hot side is 37.7% of that of the PFHX. Meanwhile, for the CFPFHX, the j factor and the TEF of the hot side under different structural parameters are always about 8–10 times and 68%–93% of that of the cold side respectively. Therefore, the CFPFHX can ensure the flow and heat transfer performance and realize the ortho-para hydrogen continuous conversion. And a fin with the larger flow area (high fin height, wide fin spacing and small fin thickness) has a better flow and heat transfer performance and ortho-para hydrogen conversion. The outlet para-hydrogen ratio youtp-H2 and the mass space velocity vm in the CFPFHX have an approximate linear trend. When mass space velocity vm ≤ 0.6589 kg/(m3·s), the outlet para-hydrogen ratio youtp-H2 can meet the requirement at 42–70 K. Above all, the mechanism of flow and heat transfer coupled with ortho-para hydrogen conversion is revealed for the first time in this study, which can provide a theoretical guidance for the application of the integrated technology in large scale hydrogen liquefaction process.  相似文献   

13.
In this study, a steady-state analytical model for heat and mass transfer in a 2D micro-reactor coated with a Nickel-based catalyst is developed to investigate microscale hydrogen production. Appropriate correlations for each species’ net rate of production or consumption, mass diffusivity, and the heat of reactions are developed using a detailed reaction mechanism of methane steam reforming. The energy and species conservation equations are then solved for the reactive mixture coupled with the wall energy equation. Finally, the response surface methodology (RSM) is employed to study the effects of channel height, inlet velocity and temperature, wall thickness and conductivity, and external heat flux on CH4 conversion. It is found that the inlet gas temperature, among different parameters, has the most influence on the overall performance of the microchannel hydrogen production. Also, the maximum necessary heat of reforming reaction increases by 84% and 26% if the CH4 conversion changes from 50% to 60% and 60% to 70%, respectively. The developed analytical simulation can be a useful tool for designing experiments in micro-scale hydrogen production.  相似文献   

14.
Ignoring possible effects due to intraphase diffusion within catalyst layers is a common feature of computational fluid dynamics models developed for reforming microchannel reactors. Resistance to diffusion within the catalyst layers applied to such a reactor is often ignored on the grounds that the catalyst layers are sufficiently thin to allow reactants unrestricted access to all available reaction sites. However, this assumption is not necessarily correct, and intraphase diffusion effects could be important. Three-dimensional numerical simulations were carried out using computational fluid dynamics to investigate the characteristics of intraphase transport processes within the catalyst layers arranged in a thermally integrated methanol reforming microchannel reactor. The heat and mass transfer effects involved in the reforming process were evaluated, and the optimum thickness of catalyst layers was determined for the reactor. Particular focus was placed on how to optimize the thickness of catalyst layers in order to operate the reactor more efficiently. The results indicated that the performance of the reactor can be greatly improved by means of proper design of catalyst layer thickness to enhance heat and mass transfer into the catalyst layers. The thickness of the catalyst layers can be optimized to minimize diffusional resistance while maximizing methanol conversion and hydrogen yield. Thick catalyst layers offer higher reactor performance, whereas thin catalyst layers improve catalyst utilization and thermal uniformity. The thickness scale at which intraphase diffusion effects become noticeable was finally determined on the basis of reactor performance. The critical thickness was found to be about 0.10 mm, and catalyst layers should be designed beyond this dimension to achieve the desired level of conversion. The critical thickness will vary depending upon layer properties and operating conditions.  相似文献   

15.
Packed bed tube reactors are commonly used for hydrogen production in proton exchange membrane fuel cells. However, the hydrogen production capacity of methanol steam reforming (MSR) is greatly limited by the poor heat transfer of packed catalyst bed. The hydrogen production capacity of catalyst bed can be effectively improved by optimizing the temperature distribution of reactor. In this study, four types of reactors including concentric circle methanol steam reforming reactor (MSRC), continuous catalytic combustion methanol steam reforming reactor (MSRR), hierarchical catalytic combustion methanol steam reforming reactor (MSRP) and segmented catalytic combustion reactor with fins (MSRF) are designed, modeled, compared and validated by experimental data. It was found that the maximum temperature difference of MSRC, MSRR, MSRP and MSRF reached 72.4 K, 58.6 K, 19.8 K and 11.3 K, respectively. In addition, the surface temperature inhomogeneity Uf and CO concentration of the MSRF decreased by 69.8% and 30.7%, compared with MSRC. At the same reactor volume, MSRF can achieve higher methanol conversion rate, and its effective energy absorption rate is 4.6%, 3.9% and 2.6% higher than that of MSRC, MSRR and MSRP, respectively. The MSRF could effectively avoid the influence of uneven temperature distribution on MSR compared with the other designs. In order to further improve the performance of MSRF, the influences of methanol vapor molar ratio, inlet temperature, flow rate, catalyst particle size and catalyst bed porosity on MSR were also discussed in the optimal reactor structure (MSRF).  相似文献   

16.
《Energy Conversion and Management》2001,42(15-17):1817-1829
The catalytic methanol steam reforming reaction was investigated by numerical simulation and experiments. Methanol conversion ratio as well as carbon monoxide (CO), which poisons a typical polymer electrolyte fuel cell, increases in a tablet catalyst when temperature is elevated. There is a trade-off relationship between methanol conversion ratio and CO concentration. It was found that the reforming reaction is controlled by heat transfer at large methanol flow rate, where the trade-off relationship shifts to lower methanol conversion ratio and higher CO concentration.To improve the trade-off relationship, internal corrugated metal heater and external catalytic combustion heater were applied to enhance the heat transfer. Optimal cell density for the internal corrugated metal heater, which was about 9×105 cell/m2, was closely related with reaction parameters such as velocity, cell density, geometric surface area and hydraulic diameter. The catalytic combustion heater is larger than the internal corrugated metal heater in size. Both high methanol conversion ratio and low CO concentration were accomplished by heat transfer enhancement with the two techniques at large methanol flow rate.  相似文献   

17.
The steam reforming of methanol was investigated in a catalytic Pd–Ag membrane reactor at different operating conditions on a commercial Cu/ZnO/Al2O3 catalyst. A comprehensive two-dimensional non-isothermal stationary mathematical model has been developed. The present model takes into account the main chemical reactions, heat and mass transfer phenomena in the membrane reactor with hydrogen permeation across the PdAg membrane in radial direction. Model validation revealed that the predicted results satisfy the experimental data reasonably well under the different operating conditions. Also the impact of different operating parameters including temperature, pressure, sweep ratio and steam ratio on the performance of reactor has been examined in terms of methanol conversion and hydrogen recovery. The modeling results have indicated the high performance of the membrane reactor which is related to continuous removal of hydrogen from retentate side through the membrane to shift the reaction equilibrium towards formation of hydrogen. The obtained results have confirmed that increasing the temperature improves the kinetic properties of the catalyst and increase in the membrane's H2 permeance, which results in higher methanol conversion and hydrogen production. Also it is inferred that the hydrogen recovery is favored at higher temperature, pressure, sweep ratio and steam ratio. The model prediction revealed that at 573 K, 2 bar and sweep ratio of 1, the maximum hydrogen recovery improves from 64% to 100% with increasing the steam ratio from 1 to 4.  相似文献   

18.
This study presents a designed and tested integrated miniature tubular quartz-made reactor for hydrogen (H2) production. This reactor is composed of two concentric tubes with an overall length of 60 mm and a diameter of 17 mm. The inner tube was designed as the combustor using Pt/Al2O3 as the catalyst. The gap between the inner and outer tubes is divided into three sections: a liquid methanol-water vaporizer, a methanol-steam reformer using RP-60 as the catalyst and a carbon monoxide (CO) methanator using Ru/Al2O3 as the catalyst. The experimental measurements indicated that this integrated reactor works properly as designed. The methanol conversion, hydrogen production rate and CO concentration were found to increase with an increasing methanol/air flow rate in the combustor and decreases with an increasing methanol/water feed rate to the reformer. The methanator experimental results indicated that the CO conversion and H2 consumption can be enhanced by increasing the Ru loading. It was also found that the CO methanation depends greatly on the reaction temperature. With a higher reaction temperature, the CO methanation, carbon dioxide (CO2) methanation, and reversed water gas shift reactions took place simultaneously. CO conversion was found to decrease while H2 consumption was found to increase. At a lower reaction temperature both the CO conversion and H2 consumption were found to increase indicating that only CO methanation took place. From the experimental results the maximum methanol conversion, hydrogen yield, and CO conversion achieved were 97%, 2.38, and 70%, respectively. The actual lowest CO concentration and maximum power density based on the reactor volume were 90 ppm and 0.8 kW/L, respectively.  相似文献   

19.
《Applied Thermal Engineering》2007,27(8-9):1320-1326
A microchannel heat exchanger was numerically analyzed using the finite volume method. The air and refrigerant-side heat transfer coefficients and pressure drops were calculated using the existing correlations that were developed for microchannel heat exchangers. To verify the present model, performance tests of the microchannel heat exchanger were conducted at various test conditions with R134a. The present model yielded a good correlation with the measured heat transfer rate, demonstrating a mean deviation of 6.8%. The performance of the microchannel evaporator for CO2 systems can be improved by varying the refrigerant flow rate to each slab and changing fin space to increase the two-phase region in the microchannel. Based on the comparison of the performance of the microchannel heat exchanger with that of the fin-tube heat exchanger designed for CO2 systems, it was proposed that the arrangement of the slabs and inlet air velocity in the microchannel heat exchanger need to be optimized by considering heat exchanger size, air outlet conditions and required capacity.  相似文献   

20.
In the present work, we report the results of a series of experiments for the hydrogen production via steam reforming of methanol with Cu–SiO2 porous catalyst coated on the internal walls of a micro-reactor with parallel micro-passages. The catalyst was prepared by coating copper and silica nanoparticles on the internal surface of the microchannel via convective flow boiling heat transfer, followed by a calcination procedure at 973 K and therefore, the catalyst does not require any supportive material, which in turn reduced the complexity and cost of the preparation. The experiments were conducted at reactant flow rates of 0.1–0.9 lit/min, operating temperatures of 523–673 K, catalyst loading of 0.25 gr to 1.25 gr and at heat flux value of 500 kW/m2. Results of the experiments showed that the methanol conversion can reach 97% at catalyst loading of 1.25 gr. It was also found that with an increase in the gas hourly space velocity (GHSV) of the reactants, the methanol conversion decreases, which was attributed to the decrease in the residence time, the suppression in diffusion of reactants into the pores of the catalyst, and also the decrease in the average film temperature of the reactor. The highest methanol conversion was obtained at gas hourly space velocity of 24,000 ml/(gr.hr) and T = 773 K and for molar ratio of methanol to water of 0.1. The molar ratio of methanol to water also influenced the thermal response of the reactor such that the surface temperature profile of the micro-reactor was more decreased at low methanol/water molar ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号