首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

2.
In this research paper, a newly energy system consisting of parabolic trough solar collectors (PTSC) field, a thermoelectric generator (TEG), a Rankine cycle and a proton exchange membrane (PEM) is proposed. The integration is performed by establishing a TEG instead of the condenser as power generation and cooling unit thereafter surplus power output of the TEG is transferred to the PEM electrolyzer for hydrogen production. The integrated renewable energy system is comprehensively modeled and influence of the effective parameters is investigated on exergy and economic indicators through the parametric study to better understand the system performance. Engineering equation solver (EES) as a potential engineering tool is used to simulate the system and obtain the desired results. In order to optimize the system, a developed multi-objective genetic algorithm MATLAB code is applied to determine the optimum operating conditions of the system. Obtained results demonstrate that at optimum working condition from exergy viewpoint, exergy efficiency and total cost are 12.76% and 61.69 $/GJ, respectively. Multi-objective optimization results further show that the final optimal point which is well-balanced between exergy efficiency and total cost, has the maximum exergy efficiency of 13.29% and total cost of 63.96 $/GJ, respectively. The corresponding values for exergy efficiency and total cost are 10.01% and 60.21 $/GJ for optimum working condition from economic standpoint. Furthermore, hydrogen production at well-balanced operating condition would be 2.28 kg/h. Eventually, the results indicate that establishing the TEG unit instead of the condenser is a promising method to optimize the performance of the system and reduce total cost.  相似文献   

3.
One of the essential steps to design energy conversion-based systems is choosing an efficient working fluid under the design goals to access stable products with high efficiency and overcome environmental issues. In this regard, the current paper is motivated to devise and evaluate a novel geothermal-driven multigeneration system under the effect of various working fluids. The proposed system consists of a flash-binary geothermal power plant, an organic flash cycle (OFC), a power/cooling subsystem (an organic Rankine cycle (ORC) and a thermoelectric generator incorporated with a compression refrigeration cycle), and freshwater and hydrogen production units utilizing a humidification-dehumidification desalination unit and a low-temperature electrolyzer. Considering the design potential of the OFC and ORC, four different environmentally-friendly working fluids, i.e., R123 and R600 in the OFC and R1234yf and R1234ze(e) in the ORC are selected and classified in four groups to introduce the best one, under the energy, exergy, and economic (3E analysis) approaches. Also, the whole system is optimized through a genetic algorithm, respecting the optimal solution for the energy efficiency and unit exergy cost of the products. According to the results, R123/R1234ze(e) shows the highest cooling, hydrogen, freshwater production rates, and energy efficiency. Likewise, the maximum power generation and exergy efficiency belong to R600/R1234ze(e). Moreover, R600/R1234yf has the lowest unit exergy cost of products.  相似文献   

4.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

5.
Direct steam generation (DSG) is the process by which steam is directly produced in parabolic trough fields and supplied to a power block. This process simplifies parabolic trough plants and improves cost effectiveness by increasing the permissible temperature of the working fluid. Similar to all solar‐based technologies, thermal energy storage is needed to overcome the intermittent nature of solar. In the present work, an innovative DSG‐based parabolic trough collector (PTC) plant hybridized with a biomass boiler is proposed and analyzed in detail. Two additional configurations comprising indirect steam generation PTC plants were also analyzed to compare their energy and exergy performance. To consider a wide range of operation, the share of biomass input to the hybridized system is varied. Energy and exergy analyses of DSG are conducted and compared with an existing indirect steam generation PTC power plants such as Andasol. The analyses are conducted on a 50 MW regenerative reheat Rankine cycle. The results obtained indicate that the proposed DSG‐based PTC plant is able to increase the overall system efficiency by 3% in comparison with indirect steam generation when linked to a biomass boiler that supplies 50% of the energy.  相似文献   

6.
In this experimental study, solar energy was stored daily using the volcanic material with the sensible heat technique. The external heat collection unit consisted of 27 m2 of south‐facing solar air collectors mounted at a 55° tilt angle. The dimensions of the packed‐bed heat storage unit were 6 × 2 × 0.6 m deep. The packed‐bed heat storage unit was built under the soil. The heat storage unit was filled with 6480 kg of volcanic material. Energy and exergy analyses were applied in order to evaluate the system efficiency. During the charging periods, the average daily rates of thermal energy and exergy stored in the heat storage unit were 1242 and 36.33 W, respectively. Since the rate of exergy depends on the temperature of the heat transfer fluid and surrounding, the rate of exergy increased as the difference between the inlet and outlet temperatures of the heat transfer fluid increased during the charging periods. It was found that the average daily net energy and exergy efficiencies in the charging periods were 39.7 and 2.03%, respectively. The average daily net energy efficiency of the heat storage system remained nearly constant during the charging periods. The maximum energy and exergy efficiencies of the heat storage system were 52.9 and 4.9%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The present study evaluates the optimal design of a renewable system based on solar and geothermal energy for power generation and cooling based on a solar cycle with thermal energy storage and an electrolyzer to produce hydrogen fuel for the combustion chamber. The subsystems include solar collectors, gas turbines, an electrolyzer, an absorption chiller, and compressed air energy storage. The solar collector surface area, geothermal source temperature, steam turbine input pressure, and evaporator input temperature were found to be major determinants. The economic analysis of the system showed that the solar subsystem, steam Rankine cycle, and compressed air energy storage accounted for the largest portions of the cost rate. The exergy analysis of the system demonstrated that the solar subsystem and SRC had the highest contributions to total exergy destruction. A comparative case study was conducted on Isfahan, Bandar Abbas, Mashhad, Semnan, and Zanjan in Iran to evaluate the performance of the proposed system at different ambient temperatures and irradiance levels during the year. To optimize the system and find the optimal objective functions, the NSGA-II algorithm was employed. The contradictory objective functions of the system included exergy efficiency maximization and cost rate minimization. The optimal Exergy round trip efficiency and cost rate were found to be 29.25% and 714.25 ($/h), respectively.  相似文献   

8.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

9.
This paper investigates the performance of a hydrogen refueling system that consists of a polymer electrolyte membrane electrolyzer integrated with photovoltaic arrays, and an electrochemical compressor to increase the hydrogen pressure. The energetic and exergetic performance of the hydrogen refueling station is analyzed at different working conditions. The exergy cost of hydrogen production is studied in three different case scenarios; that consist of i) off-grid station with the photovoltaic system and a battery bank to supply the required electric power, ii) on-grid station but the required power is supplied by the electric grid only when solar energy is not available and iii) on-grid station without energy storage. The efficiency of the station significantly increases when the electric grid empowers the system. The maximum energy and exergy efficiencies of the photovoltaic system at solar irradiation of 850 W m-2 are 13.57% and 14.51%, respectively. The exergy cost of hydrogen production in the on-grid station with energy storage is almost 30% higher than the off-grid station. Moreover, the exergy cost of hydrogen in the on-grid station without energy storage is almost 4 times higher than the off-grid station and the energy and exergy efficiencies are considerably higher.  相似文献   

10.
In this research study, a novel integrated solar based combined, cooling, heating and, power (CCHP) is proposed consisting of Parabolic trough solar collectors (PTSC) field, a dual-tank molten salt heat storage, an Organic Rankine Cycle (ORC), a Proton exchange membrane fuel cell (PEMFC), a Proton exchange membrane electrolyzer (PEME), and a single effect Li/Br water absorption chiller. Thermodynamics and economic relations are used to analyze the proposed CCHP system. The mean of Tehran solar radiation as well as each portion of solar radiation during 24 h in winter is obtained from TRNSYS software to be used in PTSC calculations. A dynamic model of the thermal storage unit is assessed for proposed CCHP system under three different conditions (i.e., without thermal energy storage (TES), with TES and with TES + PEMFC). The results demonstrate that PEMFC has the ability to improve the power output by 10% during the night and 3% at sunny hours while by using TES alone, the overnight power generation is 86% of the power generation during the sunny hours. The optimum operating condition is determined via the NSGA-II algorithm with regards to exergy efficiency and total cost rate as objective functions where the optimum values are 0.058 ($/s) and 80%, respectively. The result of single objective optimization is 0.044 ($/s) for the economic objective in which the exergy efficiency is at its lowest value (57.7%). In addition, results indicate that the amount of single objective optimization based on exergetic objective is 88% in which the total cost rate is at its highest value (0.086 $/s). The scattered distribution of design parameters and the decision variables trend are investigated. In the next step, five different evolutionary algorithms namely NSGA-II, GDE3, IBEA, SMPSO, and SPEA2 are applied, and their Pareto frontiers are compared with each other.  相似文献   

11.
Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.  相似文献   

12.
Renewable energy based multi-generation systems can help solving energy-related environmental problems. For this purpose, a novel solar tower-based multi-generation system is proposed for the green hydrogen production as the main product. A solar-driven open Brayton cycle with intercooling, regeneration and reheat is coupled with a regenerative Rankine cycle and a Kalina cycle-11 as a unique series of power cycles. Significant portion of the produced electricity is utilized to produce green hydrogen in an electrolyzer. A thermal energy storage, a single-effect absorption refrigeration cycle and two domestic hot water heaters are also integrated. Energy, exergy and economic analyses are performed to examine the performance of the proposed system, and a detailed parametric analysis is conducted. Multiobjective optimization is carried out to determine the optimum performance. Optimum energy and exergy efficiencies, unit exergy product cost and total cost rate are calculated as 39.81%, 34.44%, 0.0798 $/kWh and 182.16 $/h, respectively. Products are 22.48 kg/h hydrogen, 1478 kW power, 225.5 kW cooling and 7.63 kg/s domestic hot water. Electrolyzer power size is found as one of the most critical decision variables. Solar subsystem has the largest exergy destruction. Regenerative Rankine cycle operates at the highest energy and exergy efficiencies among power cycles.  相似文献   

13.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

14.
微网风电系统加装储能装置联合运行时,存在多种异质能量的相互转化,因此对系统性能的有效评估较为困难。为了准确衡量风能在系统中的利用、转化、损失特性,文章基于[火用]经济学基本原理,建立微网风储系统[火用]平衡及[火用]成本守恒模型,并依据所建模型确定系统各单元[火用]效率;同时确立[火用]优化潜力、成本差及[火用]经济因子的系统性能评估指标,并对微网热力学特性及经济性进行有效分析。通过试验表明,该模型能够可靠地对微网风储系统能效及经济性进行评估,可指明系统[火用]效率极大化的优化目标。  相似文献   

15.
Decentralization of electrical power generation using rooftop solar units is projected to develop to not only mitigate power losses along transmission and distribution lines, but to control greenhouse gases emissions. Due to intermittency of solar energy, traditional batteries are used to store energy. However, batteries have several drawbacks such as limited lifespan, low storage capacity, uncontrolled discharge when not connected to a load and limited number of charge/discharge cycles. In this paper, the feasibility of using hydrogen as a battery is analyzed where hydrogen is produced by the extra diurnal generated electricity by a rooftop household solar power generation unit and utilized in a fuel cell system to generate the required electrical power at night. In the proposed design, two rooftop concentrated photovoltaic thermal (CPVT) systems coupled with an organic Rankine cycle (ORC) are used to generate electricity during 9.5 h per day and the extra power is utilized in an electrolyzer to produce hydrogen. Various working fluids (Isobutane, R134a, R245fa and R123) are used in the ORC system to analyze the maximum feasible power generation by this section. Under the operating conditions, the generated power by ORC as well as its efficiency are evaluated for various working fluids and the most efficient working fluid is selected. The required power for the compressor in the hydrogen storage process is calculated and the number of electrolyzer cells required for the hydrogen production system is determined. The results indicate that the hybrid CPVT-ORC system produces 2.378 kW of electricity at 160 suns. Supplying 65% of the produced electricity to an electrolyzer, 0.2606 kg of hydrogen is produced and stored for nightly use in a fuel cell system. This amount of hydrogen can generate the required electrical power at night while the efficiency of electrolyzer is more than 70%.  相似文献   

16.
In recent years paying attention to the generation of clean and sustainable power and fresh water along with having lower cost and emission has increased. In the present research, a novel scheme for generating efficient power using the flame-assisted fuel cell is introduced, which has higher efficiency than ordinary fuel cells due to increased hydrogen concentration in the flame-rich combustion chamber. The waste heat is then introduced to a multi-effect desalination unit through a heat recovery steam generation unit to generate fresh, drinkable water. In order to make the system have higher efficiency, lower cost, and lower emission, the machine learning techniques are applied to optimize the operational conditions of the system, and find out the best solution point based on the cutting-edge algorithm of the grey wolf. Also, a complete techno-economic analysis and a parametric study are necessary to figure out the best solution point based on the TOPSIS method. The results indicate that the maximum value of exergy efficiency and drinkable water generation is 67.5% and 3.4 kg/s, respectively, while the minimum energy cost is 90.1 $/MWh. Moreover, results show that for the second optimization scenario considering the drinkable water production, energy cost, and pollution index as the objectives, the net produced power, energy efficiency, exergy efficiency, and water mass flowrate improve by around 1059 kW, 5.1%, 1.3%, and 1.6 kg/s than the design condition. Besides, energy cost and emission index are reduced by about 22 $/MWh and 51.9 kg/MWh, respectively.  相似文献   

17.
Advancing in the learning curve of solar thermal power plants (STPP) requires detailed analysis for reducing exergy losses in the energy conversion chain. This requirement should be applied to any configuration proposed for the solar field and the power block. The aim of this work is to perform this type of analysis for two ways of structuring the power plant. The first plant structure consists of a subdivision of the solar collector field into specialized sectors with specific goals conveying different requirements in temperature. The second plant structure is based on a dual thermal energy storage system with a defined hierarchy in the storage temperature. The subdivision of the solar field into different sectors reduces the exergy losses in the heating process of the working fluid. Moreover, the average temperature of the heat transfer fluid in the solar field decreases when it is compared to the conventional solar field, reducing this way the exergy losses in the collectors. The dual thermal energy storage system is devised for keeping the exergy input to the power block at its nominal level for long periods of time, including post‐sunset hours. One of the storage systems gathers a fluid heated up to temperatures above the nominal value and the second one is the classical one. The combination of both allows the manager of the plant to keep the nominal operation of the plant for longer periods than in the case of classical system. Numerical simulations performed with validated models are the basis of the exergy analyses. The configurations are compared to a reference STPP in order to evaluate their worth. Furthermore, the behaviour of the configurations is analysed to study the irreversibility of the included devices. Special attention is paid to the storage systems, as they are a key issue in both plant structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This article is a careful examination of an energy poly-generation unit integrated with an evacuated solar thermal tube collector. A proton exchange membrane (PEM) electrolysis unit is used for hydrogen production, an ejector refrigeration system (ERS) is utilized for cooling demand, and a heater unit is used for heating demand. All sub-systems are validated by considering recent articles. Cooling and heating demand, as well as the net output power are calculated. The modeled poly-generation system's exergy and energy efficiency are maximized by considering the inlet temperature of the heat exchanger and primary pressure of the ejector with the parametric evaluation of the system. The proposed poly-generation set-up can produce cooling load, heating load, and hydrogen with amounts of 5.34 kW, 5.152 kW, and 63 kg/year, respectively. Based on these values, the energy ef?ciency, and exergy ef?ciency are computed to be 64.14%, and 49.62%, respectively. Higher energy and exergy ef?ciencies are obtained by reducing high pressure of the refrigeration cycle or decreasing the temperature outlet of an auxiliary heater. The heat exchanger and thermal energy storage unit have the highest cost rate among all system components with 73,463 $ and 46,357, respectively. Parametric study indicates that the main determinative elements in the total cost rate of the system are the heater, and the solar collector.  相似文献   

19.
This paper provides fundamental principles to study the thermodynamic performance of a new screw expander–based solar thermal electricity plant. While steam turbines are generally used in direct steam generation solar systems without admitting fluid in two-phase conditions, steam screw expanders, as volumetric machines, can convert thermal to mechanical energy also by expanding liquid-steam mixtures without a decline in efficiency. In effect, steam turbines are not as competitive as screw expanders when the net power is smaller than 2 MW and for low-grade heat sources. The solar electricity generation system proposed in this paper is based on the steam Rankine cycle: Water is used as both working fluid and storage, parabolic trough collectors are used as a thermal source, and screw expanders are used as power machines. Since screw expanders can operate at off-design working conditions in several situations when installed in direct steam generation solar plants, studying expander performance under fluctuating working situations is a crucial issue. The main aim of the present paper is to establish a thermodynamic model to study the energetic benefits of the proposed power system when off-design operating conditions and variable solar radiation occur. This entails, first and foremost, developing overexpansion and underexpansion numerical models to describe the polytropic expansion phase, which considers all the losses affecting performance of the screw expander under real operating conditions. To assess the best operating conditions and maximum efficiency of the whole power system at part-load working conditions under fluctuating solar radiations, parametric optimization is then improved in a wide range of variable working conditions, assuming condensation pressures of water increasing from 0.1 to 1 bar, under an evaporation temperature rising from 170°C to 300°C.  相似文献   

20.
Today, to preserve fossil resources, mankind has to search for new ways to respond to its ever-increasing energy needs. In this study, a hybrid system of energy and the use of a parabolic trough solar collector to attract solar radiation was investigated to produce clean electricity, cooling, and hydrogen from thermodynamic and economic aspects. The designed system consisted of a parabolic trough solar collector, organic Rankine cycle, lithium-bromide absorption refrigeration cycle, and proton exchange membrane electrolysis system. The evaporator input temperature, turbine inlet temperature, solar radiation intensity, mass flow rate of collector and parabolic trough collector surface area were set as decision variables and the effect of these parameters on system performance and system exergy loss were investigated. The objective functions of this research were exergy efficiency and cost rate. In order to optimize this system, multi-objective particle swarm optimization algorithm was employed. Optimization results with particle swarm optimization indicated that the best rate of exergy efficiency is 3.12% and the system cost rate is 16.367 US$ per hour, at the same time. The system is capable of producing 15.385 kW power, 0.189 kg/day hydrogen and 56.145 kW cooling in its optimum condition. The results of sensitivity analysis showed that increasing mass flow rate at the collector, temperature at the evaporator inlet, and temperature at the turbine inlet have positive effect on the performance of the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号