共查询到20条相似文献,搜索用时 15 毫秒
1.
Ankica Kovač Matej Paranos Doria Marciuš 《International Journal of Hydrogen Energy》2021,46(16):10016-10035
The energy transition is not something that awaits us in the next decade. On the contrary, it is a process in which we are already deeply enrolled. The main step towards the creation of a carbon-neutral society is the implementation of renewable energy sources (RES) as replacements for fossil fuels. Given the intermittency of RES, energy storage has an essential role to play in this transition. Hydrogen technology with its many advances was recognized to be the most promising choice. As multiple hydrogen applications were researched relatively recently, the current development of its technology is not yet on the large-scale implementation level. With the increasing number of studies and initiated projects, the utilization of hydrogen's immense ecological potential is to be expected in the next few decades. New innovative solutions of hydrogen technology that includes hydrogen production, storage, distribution, and usage, are permeating all industry sectors. In a rapidly changing world, technological advances bring forth public discussions, that are a deciding factor whether society will be able to adapt and accept those new contributions or reject them. Currently, hydrogen is the best associated with fuel cell electric vehicles which emit only water vapour and warm air, producing no harmful tailpipe emissions. As various scientists are stressing the gravity of climate change effects that are reaching the physical environment, ecosystems, and humanity in general, concern for the future is becoming the main global topic. Consequently, governments are implementing new sustainable policies that promote RES as a substitute for fossil fuels. Increasing progress in hydrogen technology instigated nations worldwide to incorporate hydrogen in their energy legislations and national development plans, which resulted in numerous national hydrogen strategies. This work shows the progress of hydrogen taking its place as a key factor of the future green energy society. It reviews recent developments of hydrogen technologies, their social, industrial, and environmental standing, as well as the stage of transitioning economies of both advanced and beginner countries. An example of the ongoing energy transition is Croatia, which is in the process of implementing a hydrogen strategy with the ambition to be able to one day equally participates in the rapidly emerging hydrogen market. 相似文献
2.
P. Bampou 《国际可持续能源杂志》2017,36(10):994-1009
As global warming is on the threshold of each country worldwide, Middle East and North African (MENA) region has already adopted energy efficiency (EE) policies on several consuming sectors. The present paper valuates the impact of temperature increase in the residential building sector of Egypt that is the most integrated example of the 7 out of the 20 MENA countries that have started their green efforts upon building environment. Furthermore, as it is based on a literature research upon socio-economic characteristics, existing building stock, existing legal and institutional framework, it elaborates a quantitative evaluation of Egypt's energy-saving potential, outlining basic constraints upon energy conservation, in order for Egypt to be able to handle the high energy needs due to its warm climate. Last but not least, the paper proposes a policy pathway for the implementation of green building codes and concludes with the best available technologies to promote EE in the Egyptian building sector. 相似文献
3.
Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier. 相似文献
4.
《International Journal of Hydrogen Energy》2021,46(78):38959-38963
There is growing support to electrifying our economy by getting off of fossil fuels by producing renewable energy by wind and solar photovoltaic plants and using batteries to balance production and demand or to store energy onboard vehicles that cannot move along electric lines. Unfortunately, this proposal is pushed forward negating the value of hydrogen as an energy store. As here commented, the hydrogen economy is not competitive, but complementary and synergetic to the electric economy, and both should be promoted together to secure a faster transition towards a CO2 emission-free economy. 相似文献
5.
M. Luke Murray E. Hugo Seymour Jan Rogut Sylwia W. Zechowska 《International Journal of Hydrogen Energy》2008
Poland has significant reserves of energy in the form of coal. However, the exploitation of these reserves could lead to significant carbon emissions. Hydrogen technologies present a potentially sustainable option for the Polish energy system. This paper reviews the existing Polish energy system, resources, policies and measures from the perspective of planning a transition to a hydrogen-based economy. The key challenges and opportunities gathered by systematic consultation of senior stakeholders are presented. Coke oven gas and coal gasification are the major short and medium term sources of hydrogen. Underground conversion of coal deposits with integrated carbon capture and storage (CCS) is most important in the long term. Other opportunities include development of renewables, by-product hydrogen and nuclear power. Current lack of infrastructure, particularly for CCS, hydrogen pipelines and clean coal is seen as a significant barrier. Regional and central government should cooperate with industry to develop a portfolio of demonstration projects to provide experience and stimulate demand for hydrogen. 相似文献
6.
The dramatic societal, infrastructural and institutional changes associated with the transition to a hydrogen economy and the actions that must be taken to capitalize on the transition have been analyzed by a number of studies in many countries ranging from rhetorical visions to full technology roadmaps. As yet no such study has been undertaken in Portugal. This paper ascertains that Portugal needs to fully understand the potential that it has to develop a “hydrogen economy”, and to take steps for this technology transition. An analysis is made of the current Portuguese energy system and policies in the light of the key technology transition challenges towards a hydrogen economy. The current status of hydrogen technology development is compared with that of other countries, and potential production to end-use hydrogen chains are examined. Key areas of promise for hydrogen technologies in Portugal are identified. The paper concludes with recommendations for actions to begin the process of transition towards a “hydrogen economy”. 相似文献
7.
The global changes in energy policy, including the increasing contribution of renewable sources of energy to the total output of produced energy and various attempts to introduce advanced energy technologies, and the increasingly efficient use of the energy that had already been emitted are sufficient reasons to discuss Poland's energy policy. The present work features an analysis of the current state of Poland's energy economy and the economic factors that affect the power industry. The tenets of Poland's current energy policy are also presented in the context of hydrogen energy. The possibilities and limitations concerning the transition to hydrogen power in Poland are discussed taking into account a number of aspects, some of which include the degree of development of the electric power infrastructure, the current and future demand for electric energy with regard to the current geopolitical and economic situation of Poland, and Poland's membership in the European Union. 相似文献
8.
There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: ‘Governance by policy networking’, Governance by government’, ‘Governance by corporate business’, and ‘Governance by challenge’, and looks into the major line of argument in support of these paradigms and into their possible bias with respect to hydrogen options. Each of these paradigms reveals an institutional bias in that it articulates specific opportunities for collaboration and competition in order to stimulate the transition to a sustainable hydrogen economy. The paper makes the observation that there is a compelling need to reframe fashionable discourse such as the necessary shift from government to governance or from government to market. Instead, specific questions with respect to the impact of guiding policy frameworks on innovation will highlight that neither ‘neutral’ nor ‘optimal’ frameworks for policy making exist, where competing hydrogen options are at stake. The identification of paradigms of governance maybe considered a methodological device for (participator) policy analysis. 相似文献
9.
Jan Michalski Ulrich Bünger Fritz Crotogino Sabine Donadei Gregor-Sönke Schneider Thomas Pregger Karl-Kiên Cao Dominik Heide 《International Journal of Hydrogen Energy》2017,42(19):13427-13443
The Plan-DelyKaD project focused on an in-depth comparison of relevant electrolysis technologies, identified criteria for and selected most relevant salt cavern sites in Germany, studied business case potentials for applying hydrogen taken from storage to different end-users and engaged in identifying the future role of hydrogen from large scale storage in the German energy system. The focus of this paper is on the latter three topics above. The bottom-up investigation of most suitable salt cavern sites was used as input for a model-based analysis of microeconomic and macroeconomic aspects. The results identify dimensions and locations of possible hydrogen storages mostly in Northern Germany with ample potential to support the integration of fluctuating renewable electricity into the German power system. The microeconomic analysis demonstrates that the most promising early business case for hydrogen energy from large scale storage is its application as a fuel for the mobility sector. From a system perspective the analysis reveals that an optimized implementation of hydrogen generation via electrolysis and storage in salt caverns will have a positive impact on the power system in terms of reduced curtailments of wind power plants and lower residual peak loads. 相似文献
10.
《International Journal of Hydrogen Energy》2021,46(72):35525-35549
Hydrogen is seen as a promising and inevitable energy carrier in the transition towards a carbon-free energy era. This study reviews the potential for carbon-free hydrogen production, utilisation and exportation from the State of Qatar. The study aims to introduce a roadmap for current and future exploration of carbon-free hydrogen production and exportation from Qatar, for which an assessment of several available alternatives for the production of hydrogen in Qatar is performed. These alternatives include the use of natural gas as a feedstock for hydrogen production through steam methane reforming (SMR), solar integrated steam methane reforming with carbon capture, as well as the possibilities for hydrogen production from electrolysis using renewables and ammonia as another intermediate. The potential of each alternative is reviewed based on selected technical, economic and environmental criteria. The findings of this review study indicate that the production and exportation of blue ammonia currently present the best pathway for Qatar, while green hydrogen is expected to become as competitive as blue ammonia in the mid-future. It is widely accepted that as the technologies associated with clean hydrogen production improve, and the cost of renewable energy falls, green hydrogen will become quite competitive in the region. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(39):20164-20175
Hydrogen has an important role as a smart solution for Smart Grid, as it can play as an energy vector, a storage medium, and a clean fuel cell. The integration of Hydrogen and Smart Grid can minimize the impact on the environment while maximizing sustainability, which indicates that we are developing toward a hydrogen society. There have been already many studies on different aspects of this topic. For a better understanding of the related work, this paper proposed a comprehensive overview of the related work on the integration of Hydrogen and Smart Grid. Related literature is organized and analyzed from four categories, including Hydrogen energy in smart grids, Hydrogen fuel cell electric vehicles, Hydrogen economy in smart grids, and Models for energy system in smart grids. And each subject has been introduced more carefully. What's more, for a clear understanding for readers, we provide overall scenario views for the organization of the related work. 相似文献
12.
This paper reviews past energy transitions by sector and service to identify features that may be useful for future transitions. Although often considered a single event, the transition from traditional energy sources to fossil fuels involved numerous services and sectors at different times between 1500 and 1920. The main economic drivers identified for energy transitions were the opportunities to produce cheaper or better energy services. The existence of a niche market willing to pay more for these characteristics enabled new energy sources and technologies to be refined gradually until they could compete with the incumbent energy source. Nevertheless, this implied that, on average, the whole innovation chain took more than 100 years and the diffusion phase nearly 50 years. In the same way, low-carbon energy sources and technologies offer an additional characteristic (i.e. low carbon impact), which might be able to develop gradually in a niche market until they can compete with fossil fuels. However, because of consumers’ tendency to free-ride, a successful transition will need governments to provide protection of this niche market—possibly for decades. Based on past experiences, a complete transition to a low carbon economy is likely to be very slow. 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(3):1541-1558
We report a techno-economic modelling for the flexible production of hydrogen and ammonia from water and optimally combined solar and wind energy. We use hourly data in four locations with world-class solar in the Atacama desert and wind in Patagonia steppes. We find that hybridization of wind and solar can reduce hydrogen production costs by a few percents, when the effect of increasing the load factor on the electrolyser overweighs the electricity cost increase. For ammonia production, the gains by hybridization can be substantially larger, because it reduces the power variability, which is costly, due to the need for intermediate storage of hydrogen between the flexible electrolyser and the less flexible ammonia synthesis unit. Our modelling reveals the crucial role in the synthesis of flexibility, which cuts the cost of variability, especially for the more variable wind power. Our estimated near-term production costs for green hydrogen, around 2 USD/kg, and green ammonia, below 500 USD/t, are encouragingly close to competitiveness against fossil-fuel alternatives. 相似文献
14.
《International Journal of Hydrogen Energy》2023,48(75):29198-29208
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However, the cost and energy consumption for liquefaction is currently prohibitively high, creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination, the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result, the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(23):11371-11384
The goal that the international community has set itself is to reduce greenhouse gas (GHG) emissions in the short/medium-term, especially in Europe that committed itself to reducing GHG emissions to 80–95% below 1990 levels by 2050. Renewable energies play a fundamental role in achieving this objective. In this context, the policies of the main industrialized countries of the world are being oriented towards increasing the shares of electricity produced from renewable energy sources (RES).In recent years, the production of renewable energy has increased considerably, but given the availability of these sources, there is a mismatch between production and demand. This raises some issues as balancing the electricity grid and, in particular, the use of surplus energy, as well as the need to strengthen the electricity network.Among the various new solutions that are being evaluated, there are: the accumulation in batteries, the use of compressed air energy storage (CAES) and the production of hydrogen that appears to be the most suitable to associate with the water storage (pumped hydro). Concerning hydrogen, a recent study highlights that the efficiencies of hydrogen storage technologies are lower compared to advanced lead acid batteries on a DC-to-DC basis, but “in contrast […] the cost of hydrogen storage is competitive with batteries and could be competitive with CAES and pumped hydro in locations that are not favourable for these technologies” (Moliner et al., 2016) [1].This shows that, once the optimal efficiency rate is reached, the technologies concerning the production of hydrogen from renewable sources will be a viable and competitive solution. But, what will be the impact on the energy and fuel markets? The production of hydrogen through electrolysis will certainly have an important economic impact, especially in the transport sector, leading to the creation of a new market and a new supply chain that will change the physiognomy of the entire energy market. 相似文献
16.
The hydrogen economy is currently experiencing a surge in attention, partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization, this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation, transmission and storage, including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers, greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture, transport and storage infrastructure for conventional CCS, and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion, all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(52):21908-21922
The scope of hydrogen energy is being extended in the Republic of Korea as a national innovative growth engine to overcome environmental problems, particularly climate change. The effects of this expansion on the energy system and national greenhouse gas (GHG) emissions are expected to vary greatly depending on the hydrogen energy supply chain scenario. Accordingly, in this study, the energy and environmental effects of hydrogen energy supply chain scenarios on the national energy system were analyzed quantitatively using the TIMES model, a representative bottom-up energy system analysis model. The scenarios were defined in terms of three perspectives: the development level of key technologies, contribution of future renewable energy to the power generation sector, and relative importance of each hydrogen production method portfolio. All scenarios were based on the policies being considered by the Korean government. The results of the scenario analyses show, among others, that green hydrogen, i.e., water electrolysis-oriented hydrogen production, consumes a fairly large amount of electricity. Therefore, from the perspective of the entire national energy system, the transition of the power sector to renewable energy, mainly solar and wind energies, and the advancement of water electrolysis are required to reduce the national GHG emissions. 相似文献
18.
The European Union is one of the most important players in the field of world energy with an integrated and well-organized energy market. However, energy policies in the EU are not sustainable. The EU is the world’s largest importer of fossil fuels and is leading global action in accelerating the transition to renewable energy and low-carbon economy at present. Renewables make the second-largest contribution to domestic energy production after coal. 相似文献
19.
20.
A hydrogen economy, the long-term goal of visionary nations, has the potential to provide energy security, along with environmental and economic benefits. The concept of a hydrogen energy economy was first conceived at The Hydrogen Economy Miami Energy (THEME) Conference, held in March 1974 in Miami, Florida, where the International Association for Hydrogen Energy was established. Forty years later, advances in hydrogen technologies have led the world's most developed countries to invest extensively in preparation for a future hydrogen-based economy. However, the transition from a conventional petroleum-based energy economy to a hydrogen economy involves many uncertainties regarding concerns such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, hydrogen safety issues, and the response of carbon-based fuel markets. This paper presents an assessment of the economic impact of hydrogen energy on the transportation and energy use sectors of Nigeria, along with implications for Greenhouse Gas (GHG) emissions. The analysis uses the Long range Energy Alternatives Planning (LEAP) technology database and model to simultaneously consider the impact of alternative and conventional technologies and fuels on these sectors. 相似文献