共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods. 相似文献
2.
Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach 总被引:1,自引:0,他引:1
The aim of this paper is to describe the energetic metabolism of a retail park service system under an integrative approach. Energy flow accounting was applied to a case study retail park in Spain, representative of the sector across Europe, after redefining the functional unit to account for both direct energy use (buildings, gardens and outdoor lighting) and indirect energy use (employee and customer transportation). A life cycle assessment (LCA) was then undertaken to determine energy global warming potential (GWP) and some energy intensity and greenhouse gases (GHG) emission indicators were defined and applied. The results emphasise the importance of service systems in global warming policies, as a potential emission of 9.26 kg CO2/purchase was obtained for the case study, relating to a consumption of 1.64 KOE of energy, of which 21.9% was spent on buildings and 57.9% on customer transportation. Some strategies to reduce these emissions were considered: increased supply, energy efficiency, changes in distribution of modes of transport, changes in location and changes in the mix of land uses. A combination of all of these elements in a new retail park could reduce GHG emissions by more than 50%, as it is planning strategies, which seem to be the most effective. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(93):39666-39677
Reducing greenhouse gas emissions is an important task to reduce the adverse effects of climate change. A large portion of greenhouse gas emissions apparently originates from the transportation sector. Therefore, adopting cleaner technologies with lower emission footprints has become vital. For this reason, in this study, a life cycle impact analysis of hydrogen production technologies as an alternative to fossil fuels and the utilization of hydrogen in fuel cell electric buses is carried out. According to the results of this study, the operational contributions of internal combustion engines have a significant impact on life cycle impact analysis indicators. The global warming potentials of clean hydrogen production technologies result in much lower results compared to conventional hydrogen production technologies. Also, almost all indicators for biohydrogen production technologiess yield lower results because of the wastewater removal. The global warming potential results of hydrogen production methods are found to be 6.8, 1.9, 2.1, 0.5, 0.2, and 7.9 kg CO2 eq./kg H2 for PV electrolysis, wind electrolysis, high temperature electrolysis, dark fermentation, photo fermentation and conventional hydrogen production, respectively. However, the chemicals used in PV and wind turbine production increased the ecotoxicological indicators. On the other hand, hydrogen utilization in buses is a better option environmentally. The global warming potentials for PV electrolysis, wind electrolysis, high temperature electrolysis, dark fermentation, photo fermentation, conventional hydrogen, compressed natural gas bus, and diesel bus are found to be 0.060, 0.016, 0.018, 0.007, 0.006, 0.053, 0.082, and 0.125 kg CO2 eq./p.km, respectively. The results are especially important in terms of reducing the effects at the source and optimizing the systems. 相似文献
4.
Global warming, energy security, and the rising costs of oil have added a greater driving force to the development of feasible alternatives to petroleum-based transportation fuels. In parallel, wastes and wastewater generated from various industries should be avoided or converted to energy more in the future in order to reduce environmental problems and provide additional sources of energy. In this aspect, biogas plant is an effective option where gas is produced biologically by the fermentation of animal dungs, sewage, and agricultural residues. To utilize biogas as a transportation fuel, raw biogas has to undergo two major processes: cleaning and upgrading, to achieve natural gas quality. The upgraded biogas (so called bio-methane or bio-CNG) is considered green fuel with respect to environment, climate, and human health. However, the resulting bio-CNG from the processes still needs to be evaluated in terms of greenhouse gas emissions and energy aspects. This paper presents the integrated life cycle energy and environmental assessment of compressed bio-methane gas (CBG or bio-CNG) generated from cassava starch wastewater treatment plant in Thailand. The functional units were set to be 1 MJ of bio-CNG and 1 km of vehicle driven. The system boundary covered six main steps: digestion, purification and upgrading, compression, distribution, refueling, and combustion. The energy analysis result showed that the net energy ratio was higher than one, indicating a net energy gain. For the greenhouse gases aspect, the results showed that the biogas production and biogas upgrading step had the highest impact due to methane loss and high energy consumption. Comparing with other fuels, the global warming potential of bio-CNG was lower than those of fossil-based CNG and gasoline. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(50):19326-19339
Hydrogen is broadly utilized in various industries. It can also be considered as a future clean energy carrier. Currently, hydrogen is mainly produced from typical fuels such as coal; however, there exist some other clean alternatives which use water decomposition techniques. Water splitting via the copper-chlorine (Cu–Cl) thermochemical cycle is a superb option for producing clean carbon-free fuel. Here, the life cycle assessment (LCA) technique is used to investigate the environmental consequences of an integrated solar Cu–Cl fuel production facility for large-scale hydrogen production. The impact of varying important input parameters including irradiation level, plant lifetime, and solar-to-hydrogen efficiency on various environmental impacts are investigated next. For instance, an improve in the solar-to-hydrogen efficiency from 15% to 30%, results in a reduction in the GWP from 1.25 to 6.27E-01 kg CO2 eq. An uncertainty analysis using Monte Carlo simulation is conducted to deal with the study uncertainties. The results of the LCA show that the potential of acidification and global warming potential (GWP) of the current system are 8.27E-03 kg SO2 eq. and 0.91 kg CO2 eq./kg H2, respectively. According to the sensitivity analysis, the plant lifetime has the highest effect on the total GWP of the plant with a range of 0.63–1.88 kg of CO2 eq./kg H2. Results comparison with past thermochemical-based studies shows that the GWP of the current integrated system is 7% smaller than that of a solar sulfur-iodine thermochemical cycle. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(50):26536-26544
In the current study, environmental impact evaluation of electricity generation from hydrogen instead of conventional fuels is investigated with a life cycle impact assessment for residential usage. For this purpose, lignite, natural gas, and hydrogen are utilized to a power plant to generate electricity in Istanbul, Turkey throughout the year. The utilized method for life cycle analysis is the CML 2001 which considers the impacts of global warming, acidification, abiotic fossil depletion, photochemical ozone creation, ionising radiation, human toxicity potential, land use, eutrophication potential, ozone layer depletion, freshwater aquatic ecotoxicity, ecotoxicity of marine aquatic, ecotoxicity of marine sediment, and terrestrial ecotoxicity. The results of the present study illustrate that the generation with hydrogen is the best option for the environment in terms of all impact category. The global warming potentials with the 500 years time horizon for each option of electricity generation are found as 1.4 × 106 ton CO2 eq, 6 × 105 ton CO2 eq and 4.6 × 104 ton CO2 eq, respectively in the month of January. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(10):5043-5053
In the present study, a comparative life cycle assessment (LCA) for evaluation of the environmental impacts of different fuels to generate electricity through a combined cycle is carried out. For this purpose, various heat sources including solar thermal, lignite, natural gas, oil, and hydrogen are investigated with LCA methods. The methods considered for the study include CML 2001 and ReCiPe Endpoint. The results of the present LCA study for both methods show that the hydrogen is the best fuel option according to the environmental impacts. The impact categories obtained from CML 2001 are the depletion of abiotic resources, eutrophication, global warming, marine sediment, and aquatic ecotoxicity, freshwater aquatic ecotoxicity and the competition of land. Furthermore, the human health, ecosystems and resource availability are investigated with the ReCiPe Endpoint method. The greenhouse gas emissions per kWh electricity generation are 0.19 kg CO2 eq for solar, 1.21 kg CO2 eq for lignite, 0.53 kg CO2 eq for natural gas, 1.11 kg CO2 eq for oil and 0.04 kg CO2 eq for hydrogen according to the CML 2001 method. 相似文献
8.
Miroslava Smitkova František Janí?ek 《International Journal of Hydrogen Energy》2011,36(13):7844-7851
Hydrogen is considered to be an ideal energy carrier in the foreseeable future and can play a very important role in the energy system. A variety of technologies can be used to produce hydrogen. One of the most remarkable methods for large-scale hydrogen production is thermo-chemical water decomposition using heat energy from nuclear, solar and other sources. Detailed simulations of the two most promising water splitting thermo-chemical cycles (the Westinghouse cycle and the Sulphur-Iodine cycle) were performed in Aspen Plus code and obtained results were used for life cycle analysis. They were compared with two different processes for hydrogen production (coal gasification and coal pyrolysis). Some of the results obtained from LCA are also reported in the paper. 相似文献
9.
With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD). 相似文献
10.
Antonio Valente Diego Iribarren Javier Dufour 《International Journal of Hydrogen Energy》2021,46(33):17587-17594
Life cycle assessment (LCA) is a well-established methodology for the evaluation of the environmental performance of product systems. However, a large number of combinations of methodological choices is possible in LCA studies, threatening consistency when comparing different authors’ studies. Regarding hydrogen, a specific LCA harmonisation initiative has recently been undertaken. Within the framework of this initiative, harmonisation protocols and libraries of life-cycle indicators of hydrogen have been developed in order to improve the robustness of comparative LCAs. Nevertheless, these libraries are currently affected by the lack of fossil-based hydrogen options. Hence, this study fills this gap by calculating harmonised carbon and energy footprints of hydrogen for a set of 15 new case studies involving relevant production pathways: gasification, reforming and autocatalytic decomposition of fossil feedstock, and electrolysis powered by fossil and grid electricity. Overall, the resulting extended library of harmonised life-cycle indicators stresses the role of renewable hydrogen as a key requirement in the path towards an environmentally-sustainable hydrogen economy. 相似文献
11.
The controversial and highly emotional discussion about biofuels in recent years has shown that greenhouse gas2 (GHG) emissions can only be evaluated in an acceptable way by carrying out a full life cycle assessment (LCA) taking the overall life cycle including all necessary pre-chains into consideration. Against this background, the goal of this paper is it to analyse the overall life cycle of a hydrogen production and provision. A state of the art hydrogen refuelling station in Hamburg/Germany opened in February 2012 is therefore taken into consideration. Here at least 50% hydrogen from renewable sources of energy is produced on-site by water electrolysis based on surplus electricity from wind (mainly offshore wind parks) and water. The remaining other 50% of hydrogen to be sold by this station mainly to hydrogen-fuelled buses is provided by trucks from a large-scale production plant where hydrogen is produced from methane or glycerol as a by-product of the biodiesel production. These two pathways are compared within the following explanations with hydrogen production from biomass and from coal. The results show that – with the goal of reducing GHG emissions on a life cycle perspective – hydrogen production based on a water electrolysis fed by electricity from the German electricity mix should be avoided. Steam methane reforming is more promising in terms of GHG reduction but it is still based on a finite fossil fuel. For a climatic sound provision of hydrogen as a fuel electricity from renewable sources of energy like wind or biomass should be used. 相似文献
12.
Ji-Yong Lee Moo-Sang Yu Kyoung-Hoon Cha Soo-Yeon Lee Tae Won Lim Tak Hur 《International Journal of Hydrogen Energy》2009
In this study, the environmental aspects of H2 pathways are analyzed according to plausible H2 production methods, production capacity, and distribution options in Korea, using life cycle assessment (LCA) methodology. The target H2 pathways analyzed are H2 via naphtha steam reforming (Naphtha SR), H2 via natural gas steam reforming (NG SR), H2 via liquefied petroleum gas steam reforming (LPG SR), H2 via water electrolysis with wind power (WE[Wind]), and H2 via water electrolysis with Korea electricity mix (WE[KEM]). The results are then compared with those of conventional fuels (gasoline, diesel, and LPG) to identify which H2 pathway has less environmental impact than the conventional fuels. 相似文献
13.
Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming – high-pressure hydrogen bottles transported by car to hydrogen filling stations – hydrogen internal-combustion engines. 相似文献
14.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages. 相似文献
15.
In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a Cu–Cl and S–I cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the Cu–Cl and S–I cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical Cu–Cl and S–I cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way. 相似文献
16.
Fulvio Ardente Giorgio Beccali Maurizio Cellura Valerio Lo Brano 《Renewable Energy》2005,30(7):1031-1054
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory. 相似文献
17.
J. Dufour J.L. Gálvez D.P. Serrano J. Moreno G. Martínez 《International Journal of Hydrogen Energy》2010
Methane decomposition to yield hydrogen and carbon (CH4 ? 2H2 + C) is one of the cleanest alternatives, free of CO2 emissions, for producing hydrogen from fossil fuels. This reaction can be catalyzed by metals, although they suffer a fast deactivation process, or by carbonaceous materials, which present the advantage of producing the catalyst from the carbon obtained in the reaction. In this work, the environmental performance of methane decomposition catalyzed by carbonaceous catalysts has been evaluated through Life Cycle Assessment tools, comparing it to other decomposition processes and steam methane reforming coupled to carbon capture systems. The results obtained showed that the decomposition using the autogenerated carbonaceous as catalyst is the best option when reaction conversions higher than 65% are attained. These were confirmed by 2015 and 2030 forecastings. Moreover, its environmental performance is highly increased when the produced carbon is used in other commercial applications. Thus, for a methane conversion of 70%, the application of 50% of the produced carbon would lead to a virtually zero-emissions process. 相似文献
18.
Energy crises in the latter part of the 20th century, as well as the current increase in the cost of oil, emphasize the need for alternate sources of energy in the United States. Concerns about climate change dictate that the source be clean and not contribute to global warming. Hydrogen has been identified as such a source for many years and the transition to a hydrogen economy was predicted to occur from the mid-1970s to 2000. This paper reports on the status of this transition in the year 2006. Instead of being a clean source of energy, most of the hydrogen produced in the US results from steam reforming of fossil fuels, releasing CO2 and other pollutants to the atmosphere. Nuclear process heat is ideally suited for the production of hydrogen, either using electricity for electrolysis of water, or heat for thermochemical hydrogen production or reforming of fossil fuels. However, no new nuclear plants have been ordered or built in the United States since 1979, and it may be many years before high-temperature nuclear reactors are available for production of hydrogen. Considerable research and development efforts are focused on commercializing hydrogen-powered vehicles to lessen the dependence of the transportation sector on imported oil. However, the use of hydrogen fuel cell vehicles (FCV) in 2006 is two orders-of-magnitude less than what has been predicted. Although it makes little sense environmentally or economically, hydrogen is also used as fuel in internal combustion engines. Development of hydrogen economy will require a strong intervention by external forces. 相似文献
19.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation. 相似文献
20.
In this paper, we present the experimental performance evaluations of a newly developed photoelectrochemical (PEC) reactor for the production of hydrogen under no-light and concentrated solar radiation conditions. With a newly developed experimental setup, the solar light is concentrated about ten times, and the spectrum is divided using cold mirrors for better sunlight utilization. The photoelectrochemical reactor is examined at different applied potentials and the hydrogen production quantities are measured. Copper oxide, which is used as a light-sensitive material, is electrochemically coated on the cathode metal plate to increase the rate of hydrogen evolution under illumination. The present experiments are conducted to investigate the variation of reactor performance with intensified light conditions and the obtained results are compared with the dark conditions. The results of this study reveal that the hydrogen evolution rate was 41.34 mg/h for concentrated light measurement and 34.73 mg/h for no-light measurements at 2.5 V applied potential. The corresponding photocurrent generated under concentrated light at 2.5 V is found to be 0.63 mA/cm2. Under the concentrated sunlight, the hydrogen production rates increase considerably which is led by the positive effect of the photocurrent contribution. 相似文献