首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

2.
The two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets based composites are prepared in the form of the NiS/g-C3N4, CdS/g-C3N4 and CdS/NiS/g-C3N4 using a facile and reliable method of chemical deposition. The TEM and HRTEM images demonstrated a spectacular representation of the 2D lamellar microstructure of the g-C3N4 with adequately attached CdS and NiS nanoparticles. The changes in crystallinity and the surface elemental valence states of composites with the incorporation of two metal sulphides are studied, which confirmed the formation of composites. The photocatalytic response of the composites was estimated by photodegradation of Rhodamine B (C28H31ClN2O3–RhB), and the ternary composite CdS/NiS/g-C3N4 samples exhibited the superior photocatalytic performance. Further, the free radical capture and electron paramagnetic resonance (EPR) spectroscopy experiments identified the main active species that contributed to the photocatalytic reaction. Besides, the samples’ photocatalytic performance was evaluated by photocatalytic hydrogen production. The stability of the performance-optimized composite was determined by employing cyclic experiments over five cycles. The CdS/NiS/g-C3N4 showed the highest efficiency of hydrogen production i.e. about 423.37 μmol.g?1.h?1, which is 2.89 times that of the pristine g-C3N4. Finally, two types of heterojunction structures were proposed to interpret the enhanced photocatalytic efficiency.  相似文献   

3.
In this report, a novel g-C3N4/Au/BiVO4 photocatalyst has been prepared successfully by assembling gold nanoparticles on the interface of super-thin porous g-C3N4 and BiVO4, which exhibits outstanding photocatalytic performance toward hydrogen evolution and durable stability in the absence of cocatalyst. FESEM micrograph analysis suggested that the intimate contact between Au, BiVO4, and g-C3N4 in the as-developed photocatalyst allows a smooth migration and separation of photogenerated charge carriers. In addition, the XRD, EDX and XPS analysis further confirmed the successful formation of the as-prepared g-C3N4/Au/BiVO4 photocatalyst. The photocatalytic hydrogen production activity of the developed photocatalyst was evaluated under visible-light irradiation (λ > 420 nm) using methanol as a sacrificial reagent. By optimizing the 5-CN/Au/BiVO4 composite shows the highest H2 evolution rate (2986 μmolg−1h−1), which is 15 times higher than that of g-C3N4 (199 μmolg−1h−1) and 10 time better than bare BiVO4 (297 μmolg−1h−1). The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system. The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system.  相似文献   

4.
TiO2-x/g-C3N4/CdS ternary heterojunctions are fabricated through thermal polymerization-chemical bath deposition combined with in-situ solid-state chemical reduction approach. The prepared materials are characterized by X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption, and X-ray photoelectron spectroscopy. The results show that the ternary heterojunctions are formed successfully and CdS quantum dots (QDs) and TiO2 are anchored on surface of g-C3N4 nanosheets simultaneously. The visible-light-driven photocatalytic degradation ratio of Bisphenol A and hydrogen production rate are up to 95% and ∼254.8 μmol h−1, respectively, which are several times higher than that of pristine TiO2. The excellent visible-light-driven photocatalytic activity can be ascribed to the synergistic effect of TiO2−x, g-C3N4 and CdS QDs which extend the photoresponse to visible light region and favor the spatial separation of photogenerated charge carriers.  相似文献   

5.
Seeking an efficient and non-precious co-catalyst for g-C3N4 (CN) remains a great demanding to achieve high photocatalytic hydrogen generation performance. Herein, a composite photocatalyst with high efficiency was prepared by modifying CN with coral-like NiSe2. The optimal hydrogen evolution rate of 643.16 μmol g?1 h?1 is from NiSe2/CN-5 under visible light. Superior light absorption and interfacial charge transfer properties including suppressed photogenerated carrier recombination and efficient separation of photogenerated electron-hole pairs have been observed, which account for the enhanced photocatalytic performance of CN.  相似文献   

6.
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts.  相似文献   

7.
Fabricating environmental and stable graphitic carbon nitride (g-C3N4) photocatalyst with highly efficient visible light response and charge separation is still a challenging work. Herein, g-C3N4 ultrathin nanosheets are synthesized via oxidation etching method. The as-synthesized samples show improved visible-light response and photogenerated charge separation, which is revealed to be brought from the synergy of hierarchical porous structure and nitrogen vacancies. On one hand, macropores can provide light transport channels for enhanced visible light absorption, meanwhile the photogenerated charge favors to be migrated on two-dimensional ultrathin planes and trapped in mesoporous structure to avoid the recombination. Also, macropore and mesopore promote the transport and adsorption of substrates. On the other hand, DFT calculations verify that nitrogen vacancies are conductive to the rearrangement of charge density distribution and the formation of defect levels in the band gap of g-C3N4, leading to the improvement of carrier mobility and separation. Thus, nitrogen vacancies promote more active sites generation. Consequently, the g-C3N4 ultrathin nanosheet presents a promising photocatalytic hydrogen evolution rate of 1.77 mmol .g?1 .h?1 in a long time run under visible light, which is far higher than that of comparison samples (0.18 and 0.29 mmol .g?1.h?1 respectively).  相似文献   

8.
Constructing heterostructures with efficient charge separation is a promising route to improve photocatalytic hydrogen production. In this paper, MoSx/CdS/KTaO3 ternary heterojunction photocatalysts were successfully prepared by a two-step method (hydrothermal method and photo deposition method), which improved the photocatalytic hydrogen evolution activity. The results show that the rate of hydrogen evolution for the optimized photocatalyst is 2.697 mmol g?1·h?1under visible light, which is 17 times and 2.6 times of the original CdS (0.159 mmol g?1 h?1) and the optimal CdS/KTaO3(1.033 mmol g?1 h?1), respectively, and the ternary photocatalyst also shows good stability. The improvement on photocatalytic hydrogen evolution performance can be attributed to the formation of heterojunction between the prepared composite materials, which effectively promotes the separation and migration of photo-generated carriers. Amorphous MoSx acts as an electron trap to capture photogenerated electrons, providing active sites for proton reduction. This provides beneficial enlightenment for hydrogen production by efficiently utilizing sunlight to decompose water.  相似文献   

9.
Fast charge recombination and limited visible-light absorption often hinder the practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution. In this work, we report the synthesis of ternary heterostructured noble-metal-free NiS–CuS–C3N4 with near-infrared (NIR) response for enhanced solar light hydrogen evolution from water. At an optimal 7% NiS-3% CuS–C3N4 composition, a H2-evolution rate of 1602 μmol g−1 h−1 can be achieved. The apparent quantum efficiency at 400 nm and 940 nm was measured to be 9.7% and 0.44%, respectively. Based on detailed analysis, the reasonable mechanism is proposed and the significantly enhanced photocatalytic performance should be attributed to dramatically improved charge transfer through type-II heterojunction and NiS cocatalyst. Additionally, the computational study is employed to help explain the promotion of NiS. In this case, this work might provide a platform for the construction of efficient noble-metal-free C3N4-based ternary heterostructured photocatalysts in the future.  相似文献   

10.
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts.  相似文献   

11.
Herein, highly efficient and cost effective solar photocatalytic water splitting for hydrogen (H2) generation was achieved by modified g-C3N4. Visible light absorption of g-C3N4 was enhanced by decorating g-C3N4 matrix with silver nanoparticles (Ag). Moreover, incorporation of carbon nanotubes (CNTs) in Ag/g-C3N4 facilitated photocatalytic performance through efficient separation and transfer of photogenerated e-h pairs (charges) in Ag/g-C3N4 that consequently generated very pure and significant H2. Among several tested ratios (wt. %) of Ag/g-C3N4/CNTs, 1.82 (Ag/g-C3N4) and 2.00 (and Ag/g-C3N4/CNTs) were found to be highly efficient that harvested maximum visible-light and produced H2 @1.48 mmol h−1 and 1.78 mmol h−1. We witnessed distinctive role of CNTs as an electron collector and carrier to separate photogenerated e-h pairs to facilitate photocatalysis for H2 generation together with possible utility of Ag and CNTs doped materials with regard to energy transformation.  相似文献   

12.
In this paper, we designed a composite photocatalytic system in which cobalt nanoparticles (Co NPs) are attached to nitrogen-doped carbon (N-d-C) and co-bonded to the surface of the noted photocatalyst graphite carbon nitride (g-C3N4), showing an excellent photocatalytic hydrogen production. The bulk g-C3N4 was formed in the first thermal treatment in air using melamine as a precursor. Subsequently, the secondary calcination under N2 led to the synchronous fabrication of N-d-C/Co NPs and their combination with g-C3N4 to form a novel ternary photocatalyst (g-C3N4/N-d-C/Co NPs). Co NPs exposed on the surface of the nanomaterials endowed much more reaction sites than g-C3N4 for photocatalytic hydrogen production. Meanwhile, the embedded N-d-C provided an additional transfer approach for photocarriers. The as-prepared composite nanomaterials own a relatively high specific surface area of 97.45 m2 g?1 with an average pore size of 3.83 nm. As a result, compared with pristine g-C3N4 (~25.35 μmol g?1 h?1), the photocatalytic performance was increased by over 10 times (~270.05 μmol g?1 h?1). Our work gives a novel approach for highly active g–C3N4–based photocatalysts in the field of photocatalysis.  相似文献   

13.
g-C3N4 has shown great potentials in photocatalytic water splitting to produce hydrogen. Herein, we successfully synthesized g-C3N4 nanosheets via exfoliating bulk g-C3N4. And different metal nanoparticles were photo-deposited onto the surface of g-C3N4 nanosheets. The photocatalytic H2 production activity of g-C3N4 nanosheets increased from 0 to 11.2 μmol/h/gcat. The Pt loaded g-C3N4 nanosheets manifested the highest H2 production activity with a rate of 589.4 μmol/h/gcat. In addition, the hydrogen evolution rate was further enhanced with addition of external bias to fabricate a photoelectrocatalytic (PEC) system. And the maximum hydrogen production rate (23.1 mmol/h/m2) was obtained at a voltage of 0.6 V (vs. Ag/AgCl). The enhancement in H2 production may be due to the following reasons: (1) Two-dimensional atomic flakes is beneficial to increase the specific surface area of g-C3N4, enhance the mobility of carriers, and improve the energy band structure, (2) Pt nanoparticles play an important role in g-C3N4 electron transport, (3) the g-C3N4 nanosheets loaded with Pt nanoparticles exhibited significant enhancement in photoelectrocatalytic performance, which may be attributed to its enhanced electronic conductivity and photoelectrochemical surface area, (4) Pt inhibited the recombination of photogenerated carriers and significantly improved the photocatalytic performance. The enhancement mechanism was deeply discussed and explained in this work.  相似文献   

14.
A high-efficiency and easy-available approach was developed to obtain a ternary heterojunction composites with advanced hydrogen evolution reaction (HER) performance under visible light by water split. PdAg bimetallic nanoparticles make a close contact interface between g-C3N4(CN) and Zn0.5Cd0.5S(ZCS). Under visible light irradiation, CN and ZCS are both excited to generate electron-hole pairs, PdAg bimetallic nanoparticles act as a bridge between CN and ZCS. Not only can the photogenerated electrons from CN be captured, but they can also be quickly transferred to the surface of ZCS and participate in the photocatalytic reaction to release H2, and the recombination of charge carriers between the contact interface of ZCS and CN can be significantly inhibited. In addition, the thin CN layer reduces the photocorrosion of the ZCS and enhances the specific surface area of the composite material. After testing, the composite material with 30 wt% ZCS and 4 wt% PdAg demonstrates hydrogen evolution performance, up to 6250.7 μmol g?1h?1, which is 753 times the hydrogen evolution rate of single-component CN and 12.6 times of ZCS/CN. Compared with single-component and two-component photocatalysts, the ternary ZCS/PdAg/CN photocatalyst achieves significantly enhanced photocatalytic activity.  相似文献   

15.
Controlling the structure of semiconductors to tailor are physicochemical and photoelectronic structure features. Graphitic carbon nitride has triggered a new impetus in the field of photocatalysis. However, the rapid recombination of charge carriers limited its photocatalytic activity. Herein, we demonstrate that potassium doped and nitrogen defects into graphitic carbon nitride (KCNx) framework are favorable for visible light harvesting, charge separation and have highly efficient photocatalytic behavior for water splitting. It exhibits a high hydrogen evolution activity of 59.9 mmol·g?1·h?1 (66.6 times much higher than that of pristine g-C3N4), and remarkable apparent quantum efficiency of 57.17% at 420 nm. The superior photocatalytic performance of the KCNx sample was attributed to the less recombination rate of photogenerated electron and hole, and enhanced conductivity, which was proven by photoelectrochemical and PL. This work reveals the synergistic mechanism of introducing foreign elements and defects into the framework of graphitic carbon nitride to improve its photocatalytic activity.  相似文献   

16.
The effective separation of photogenerated charge carriers, their transport and interfacial contact is of great significance for excellent performance of semiconductor based photocatalysts. Herein, we report the fabrication of two dimensional (2D) nanosheets heterojunction comprising of N-doped ZnO nanosheets loaded over graphitic carbon nitride (g-C3N4) nanosheets for enhanced photocatalytic hydrogen evolution. The prepared 2D-2D heterojunctions with varying amount of g-C3N4 nanosheets have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) techniques. The optimized heterojunction photocatalyst with 30 wt% of g-C3N4 nanosheets (NZCN30) exhibit hydrogen evolution rate of 18836 μmol h?1 gcat?1 in presence of Na2S and Na2SO3 as sacrificial agents under simulated solar light irradiation. The enhanced photocatalytic performance of NZCN30 heterojunction has been supported well by photoluminescence and photoelectrochemical investigations, which shows the minimum recombination rate and high photoinduced current density, respectively. In addition, the existence of 2D-2D interfacial contact plays a major role in enhanced H2 evolution by high face-to-face contact surface area for separation of photogenerated charge carriers in space which facilitate their transfer for H2 generation. This work paves way for the development of 2D-2D heterojunctions for diverse applications.  相似文献   

17.
Graphitic carbon nitride (g-C3N4) is one of the promising two-dimensional metal-free photocatalysts for solar water splitting. Regrettably, the fast electron-hole pair recombination of g-C3N4 reduces their photocatalytic water splitting efficiency. In this work, we have synthesized the CuO/g-C3N4 heterojunction via wet impregnation followed by a calcination method for photocatalytic H2 production. The formation of CuO/g-C3N4 heterojunction was confirmed by XRD, UV–vis and PL studies. Notably, the formation of heterojunction not only improved the optical absorption towards visible region and also enhanced the carrier generation and separation as confirmed by PL and photocurrent studies. The photocatalytic H2 production results revealed that CuO/g-C3N4 photocatalyst demonstrated the increased photocatalytic H2 production rate than bare g-C3N4. The maximum H2 production rate was obtained with 4 wt % CuO loaded g-C3N4 photocatalyst. Importantly, the rate of H2 production was further improved by introducing simple redox couple Co2+/Co3+. Addition of Co2+ during photocatalytic H2 production shuttled the photogenerated holes by a reversible conversion of Co2+ to Co3+ with accomplishing water oxidation. The effective shuttling of photogenerated holes decreased the election-hole pair recombination and thereby enhancing the photocatalytic H2 production rate. It is worth to mention that the addition of Co2+ with 4 wt % CuO/g-C3N4 photocatalyst showed ∼7.5 and ∼2.0 folds enhanced photocatalytic H2 production rate than bare g-C3N4/Co2+ and CuO/g-C3N4 photocatalysts. Thus, we strongly believe that the present simple redox couple mediated charge carrier separation without using noble metals may provide a new idea to reduce the recombination rate.  相似文献   

18.
In this paper, a novel 2D bubble-like g-C3N4 (B–CN) with a highly porous and crosslinked structure is successfully synthesized via a cost-effective bottom-up process. The as-prepared B–CN photocatalyst delivers a considerably expanded specific surface area and increased active sites. Moreover, the 2D bubble-like structure can afford shortened diffusion paths for both photogenerated charge carriers and reactants. As a result, the photocatalytic H2 evolution rate of B–CN reached 268.9 μmol g?1 h?1, over 5 times more than that of bulk C3N4. The Ni ions were further deposited on B–CN as a cocatalyst to enhance the photocatalytic activity. Benefit from the synergy of 2D bubble-like structure and Ni species cocatalyst, recombination of photoinduced charges was greatly inhibited and the hydrogen evolution reaction (HER) was significantly accelerated. The resulted catalyst achieved a dramatically high H2 evolution rate of 1291 μmol g?1 h?1. This work provides an alternative way to synthesize novel porous carbon nitride together with non-noble metal cocatalysts toward enhanced photocatalytic activity for H2 production.  相似文献   

19.
Novel carbon dots (CDs)/graphitic carbon nitride (g-C3N4) hybrids were fabricated via an in situ thermal polymerization of the precursors, urea and glucose. This heterojunction catalyst exhibited enhanced photocatalytic H2 evolution activity under visible-light (λ > 420). A sample of CDs/g-C3N4 hybrids, CN/G0.5, which was prepared from 0.5 mg of glucose in 6.0 g of urea (8.3 × 10?3 wt% glucose), exhibited the best photocatalytic performance for hydrogen production from water under visible light irradiation, which is about 4.55 times of that of the bulk g-C3N4 (BCN). The improvement of photocatalytic activity was mainly attributed to the construction of built-in electric field at the interface of CDs and g-C3N4, which could improve the separation of photogenerated electron-hole pair. Moreover, the tight connection of CDs with g-C3N4 would serve as a well electron transport channel, which could promote the photocatalytic H2 evolution ability.  相似文献   

20.
Mesoporous g-C3N4/g-C3N4 (Meso-g-C3N4/g-C3N4) nanosheets laminated homojunctions have been fabricated via template-calcination strategy using melamine and amino cyanamide as co-precursors. The prepared Meso-g-C3N4/g-C3N4 nanosheets laminated homojunctions possess relative high surface area of 34 m2 g?1, large pore size of 15.0 nm and narrow band gap of 2.75 eV. The visible-light-driven photocatalytic reaction rate constant of methyl orange and hydrogen production rate (~115.6 μmol h?1 g?1) for Meso-g-C3N4/g-C3N4 nanosheets laminated homojunctions is about 12.5 and 6.5 times higher than that of the pristine g-C3N4, respectively. This may be attributed to the synergetic effect of the close-contact laminated structure contributing to the separation of photogenerated charge carriers and mesoporous structure facilitating the diffusion of reactants and products, and offering more surface active sites. This novel laminated homojunction may open up a new avenue for designing other high-efficient photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号