首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the enhancement in electrocatalytic activity of Mn–O–Co composite electrode developed through chemical reduction method. The Mn–O–Co composite electrode exhibits high catalytic activity with a low Tafel slope of 123 mV dec−1 and a low overpotential of 117 mV at a current density of 10 mA cm−2. The enhancement in electrocatalytic activity of Mn–O–Co composite electrode is due to the synergistic activity of MnO and CoO with the NiP matrix. The intermetallic interaction among the half-filled orbitals of manganese with the fully occupied orbitals of cobalt and nickel leads to an effective electron delocalization in the catalytic system which enhances the HER performance of the coating. The Cdl value of the composite electrode is in the order of 254 μF, which is approximately ten fold higher than the bare NiP coating, due to the enhancement in interaction between the Mn–O–Co composite electrode and the reactive species in the HER medium. The Mn–O–Co composite electrode shows promising characteristics as an electrocatalyst with long term stability and remarkable competency with the commercially available electrodes.  相似文献   

2.
Amorphous Ni–S–Mn alloy electrodes were obtained by electrodeposition. The microstructure, surface morphology and composition of the new Ni–S–Mn alloy on the Ni substrate were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX). The electrochemical kinetics and mechanism of the hydrogen evolution reaction (HER) of formed electrodes were studied by measurement of the steady-state polarization. Owing to the larger exchange current densities, the lower standard reaction activity energy and a larger surface roughness, the amorphous Ni–S–Mn alloy electrode performs at a higher electrochemical activity with greater stability for the HER in 30 wt% KOH solution at various temperatures than the Ni–S alloy electrode.  相似文献   

3.
Transition metal dichalcogenides (TMDs) have attracted significant research interest due to its promising performance in hydrogen evolution reaction (HER). Synergistic effect between materials interface can improve the electrocatalytic properties. In this work, the WS2–CoS2 heterostructure supported on carbon paper (CP) was elaborately fabricated by a three-step method. Owing to the synergistic effect, WS2–CoS2 heterostructure exhibits an excellent electrocatalytic activity with a low overpotential of 245 mV at 100 mA/cm2 and a small Tafel slope of 270 mV/dec toward HER. We demonstrate that the increased specific surface area and conductivity of the heterostructure play a key role in enhancing the overall catalytic efficiency. Moreover, the crystal lattice distortion in the heterostructure could induce charge redistribution and improve electron transfer efficiency, which may also benefit the whole HER activity.  相似文献   

4.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   

5.
Ni–S–Fe alloy has been successfully fabricated on a copper foil substrate through direct-current electrodeposition as an electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The Ni–S–Fe alloy is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic performance of Ni–S–Fe alloy for HER is studied in 30 wt% KOH solution. The results show that the Ni–S–Fe alloy exhibits much higher catalytic activity for HER relative to Ni–S alloy, as manifested by smaller overpotential of 222 mV at 10 mA cm?2 and higher exchange current density of 1.60 × 10?2 mA cm?2. The Tafel slope of 84.5 mV·dec?1 implies an underlying Volmer-Heyrovsky mechanism. The outstanding catalytic performance of the Ni–S–Fe alloy may originate from the synergistic effects of Ni and Fe, refined grain, and enlarged surface area of Ni–S–Fe alloy upon Fe doping. In addition, the Ni–S–Fe alloy has better anti-corrosion property than Ni–S alloy as a result of the poorer crystallinity of Ni–S–Fe alloy.  相似文献   

6.
The synthesis of high performance and economical electrocatalysts in the process of overall water splitting is very important for the production of hydrogen energy and has become one of the most important challenges. Here, various Ni, Ni–Fe, Ni–Mn nanosheets and Ni–Fe–Mn ternary nanosheets were created using cost-effective, versatile and binder-free electrochemical deposition methods, and the electrocatalytic activity of various electrodes for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were investigated in an alkaline environment. Due to the high electrochemical active surface area due to the fabrication of nanosheets, the synergistic effect between different elements on the electronic structure, the high wettability due to the formation of nanosheets and the quick detachment of formed gasses from the electrode, the Ni–Fe–Mn nanosheets electrode showed excellent electrocatalytic activity. In order to deliver the 10 mA cm−2 current density in HER and OER processes, this electrode required values of 64 mV and 230 mV overpotential, respectively. Also, the stability test showed that after 10 h of electrolysis at a current density of 100 mA cm−2, the overpotential changes was very small (less than 4%), indicating that the electrode was excellent electrostatic stability. Also, when using as a bi-functional electrode in the full water splitting system, it only needed a cell voltage of 1528 V to deliver a current of 10 mA cm−2. The results of this study indicate a new strategy for the synthesis of active and stable electrocatalysts.  相似文献   

7.
Molybdenum diselenide (MoSe2) is a potential catalytic material for the electrocatalytic hydrogen evolution reaction (HER). However, due to the low density of its active sites, MoSe2 nanosheets feature high overpotential in HER, which limits its practical application. This describes the method of doping the Ni in MoSe2 nanosheets to increase active sites. The NiO2 evenly dispersed on MoSe2 by ethanol solution reduces to ~4 nm Ni nanoclusters under annealing process, which is firmly adhered to MoSe2 nanosheets with Ni–Se bond. The electrochemical active surface area of Ni-doped MoSe2 expands, proving that Ni dopants produce more activity sites in MoSe2 nanosheets. The overpotential of MoSe2 (at 10 mA cm−2) decreases from 335 mV to 181 mV with 4.5 at.% Ni doped in 1 M KOH. The Ni–MoSe2 also characterizes excellent stability for 12 h with the formation of Ni–Se bond. The study of doping Ni in MoSe2 nanosheets is of great guiding significance to the design and production of non-noble electrocatalysts for HER in alkaline media.  相似文献   

8.
It remains an important project for the development of water splitting electrolyze to design and synthesis of more efficient non-noble metal catalyst. In this work, a structured Ni–MoS2 composite coating has been synthesized under supergravity fields with nickel sulphamate bath containing suspended MoS2 submicro-flakes. X-ray diffraction patterns indicate that the MoS2 submicro-flakes have been successfully incorporated into the Ni matrix. Additionally, SEM shows that the prepared Ni–MoS2 composite coatings display finer grain size than the pure Ni coatings, which can increase the electrochemistry surface area and the active site of hydrogen evolution reaction. Therefore, due to the synergistic effect of molybdenum disulfide and nickel, the Ni–MoS2 composite coatings are directly used as binder-free electrode, which exhibits outstanding electrocatalytic activity for HER in 1.0 M NaOH solution at room temperature. The Ni–MoS2 composite coatings demonstrated an outstanding performance toward the electrocatalytic hydrogen production with low overpotential (100 mA cm?2 at η = 207 mV), a Tafel slope as small as 65 mV dec?1, and stable cycling performance (1200 cycles). The preeminent HER performance of this catalyst suggests that it may hold great promise for practical applications.  相似文献   

9.
Hydrogen evolution reaction (HER) on the Ni–Fe–C electrodes electrodeposited at current density ranging from 100 to 300 A/m2, as well as their electrochemical properties in 3.5% NaCl solution at 90 °C and pH = 12, had been investigated by polarization measurements, EIS technique. It was shown that the carbon content and grain size of Ni–Fe–C coatings are affected by current density. In addition, the hydrogen evolution overpotential of Ni–Fe–C electrodes was related with carbon content and grain size. The Ni–Fe–C electrodes with optimum catalytic activity for the HER were found to contain the maximum carbon content 1.59% and the minimum grain size 3.4 nm. The results of a comparative analysis between carbon content and intrinsic activity are that carbon content plays an important role in intrinsic activity of Ni–Fe–C electrodes.  相似文献   

10.
The study reports the synthesis of mesoporous WO3–TiO2 nanocomposite with tuned particle size (~7 nm), pore diameter (~4.9 nm), specific surface area (SBET = 129.112 m2/g) and pore volume (Vtot = 0.185 cm3/g) by an acid catalyzed peptization method, and its utilization for the development of stable catalytic electrode with enhanced activity towards alkaline hydrogen evolution reaction (HER). The SEM and AFM analyses confirm the formation of good quality composite electrodes with improved surface roughness through electroless deposition method. The developed WO3–TiO2 nanocomposite electrode exhibits low overpotential value of 120 mV with an exchange current density of 6.20 × 10?5 mA/cm2, and a low Tafel slope value of 98 mV/dec. Apart from the high HER performance, the developed WO3–TiO2 nanocomposite electrode exhibits competency with the state-of-the-art electrode materials for alkaline HER in industrial processes with sustained catalytic activity, tolerance behavior and long-term stability.  相似文献   

11.
The exploration of non-precious metal catalysts has always been a hot topic. Here, a new type of Ni–La-Nd-Y film was electrodeposited on nickel foam (NF). The Ni–La-Nd-Y film shows outstanding HER activity and stability under alkaline conditions. La2NiO4 makes the electrode surface present a regular layered structure, which greatly increases the number of electrochemically active sites. Ni–La-Nd-Y only needs 46 mV overpotential driving current density of 10  mA cm?2 in 1MKOH solution, which is very close to the HER performance of metal Pt. By doping rare earth elements and taking advantage of the shrinkage characteristics of lanthanides, this work took advantage of the shrinkage characteristics of the lanthanide series and found new ideas for improving catalysts through the combination of different rare earth elements.  相似文献   

12.
Effect of milling time on structure of pure Al powder and consequently on efficiency of Al-water reaction and hydrogen production is studied. Progress in milling process is studied considering changes in morphology, size, lattice imperfections and grains orientation of Al particles. Morphology of particles before and after the reaction is studied to establish a role of size and shape of particles on kinetics of the reaction. It is demonstrated that the formation of interlayer spaces within the investigated Al particles effectively increases hydrogen yield. Moreover, prolonged ball milling eliminates the interlayer spaces and decreases the rate of reaction of water with the powders.  相似文献   

13.
The first photocatalytic [FeFe]-hydrogenase ([FeFe]-H2ase) mimic 3 with noble-metal-free benzothiazole as donating photosensitizer had been successfully constructed via an easily accessible approach, and fully characterized by various spectroscopic and X-ray crystallographic techniques. Steady-state spectroscopy and electrochemistry revealed the evidences indicating that the photo-induced electron transfer occurred in 3. The reduced [FeIFe0] species was further confirmed by laser flash photolysis and considered to be responsible for the light-driven H2 evolution. As a result, the photocatalytic system consisting of the photocatalyst 3 and the sacrificial electron donor in the presence of proton source indeed produced H2 with a turnover number (TON) of 24.2 under light irradiation. The TON indicated a remarkably photocatalytic efficiency for an [FeFe]-H2ase mimic assembled by the covalent combination of a photosensitizer to the catalytic center. The results demonstrated the tremendous potential of present synthetic strategy for the construction of compact, inexpensive, easily accessible [FeFe]-H2ase model complexes as photocatalysts.  相似文献   

14.
Electro active Ni–Mo electrodes have been prepared by mechanical alloying and pressure-less sintering (1173K) Ni and Mo powders. The electrochemical performance of obtained electrodes has been evaluated in KOH 30% at 343K as a function of the milling time, applied pressure for green compaction as well as the effect conferred by the addition of a process control agent (PCA). Cathodic slope of the best specimen is 279mV/dec. Faster reaction kinetics is observed for the specimens treated with PCA addition. The longer milling time and applied pressure on the specimens the better cathodic response. The activation overpotential, i.e. cathodic-Tafel slopes found at high overvoltages are in the range of 274–481mV/dec, whereas the exchange current density for the hydrogen evolution reaction ranged from 27.3 to 1.4mA/cm2.  相似文献   

15.
In this work, nickel-based electrodes were prepared using composite electrodeposition technique in a nickel sulphamate bath containing suspended micro- or nano-sized CeO2 particles. The prepared Ni–CeO2 composite electrodes exhibit an enhanced high catalytic activity toward hydrogen evolution reaction (HER) in alkaline solutions. X-ray diffraction patterns indicated that the CeO2 particles have been successfully incorporated into the Ni matrix and altered the texture coefficient (TC) of the Ni layer. The morphology of the obtained coatings was characterized by Scanning Electron Microscopy, and the CeO2 content was determined by coupled energy dispersive X-ray spectrometry. The thermal stability of the composite electrodes was analyzed by thermogravimetric and differential scanning calorimetry, showing a good thermal stability. The catalytic activity of the composite electrodes for HER was measured by steady-state polarization and electrochemical impedance spectroscopy techniques in 1.0 M NaOH solution at room temperature. The exchange current density of HER on the Ni–CeO2 composite electrodes was much higher than that on Ni electrode. EIS results suggested that a synergetic effect on HER may exist between CeO2 particles and Ni matrix. Compared to nano-CeO2, the micro-CeO2 derived composite electrodes showed higher electrochemical activity. The possible correlation among particle size, content and catalytic activity is discussed.  相似文献   

16.
Non-noble metal-based materials as low-cost hydrogen evolution reaction (HER) catalysts are key materials for sustainable hydrogen energy production. Bismuth and antimony chalcogenides are among the hopeful candidates to achieve this goal. In this work, a V-doped Sb2Te3 encapsulated Bi2Te3 core-shell electrocatalyst (Bi2Te3/Vx-Sb2Te3) has been synthesized by a two-step solvothermal method. V doping adjusts the electronic structure of catalyst, dramatically enhances electric double layer capacitance (Cdl) of the catalyst, decreases charge transfer resistance (Rct) of the catalyst and increases carrier concentration of the catalyst. Therefore, the V doping method increases the active sites on the surface of the material, and promotes the charge transfer and electron transport in the HER process. In addition, V doping can also adjust the hydrophilicity of the material surface, promote the release of hydrogen, and quickly re-expose the active sites. Bi2Te3/Vx-Sb2Te3 electrocatalysts exhibit brilliant HER activity and high stability in both acidic and alkaline electrolytes. This study uses the strategy of V doping to control the electronic structure of materials, which will provide suggestions for the design and preparation for other high-activity catalysts.  相似文献   

17.
In this study Ni–Co alloys have been activated during hydrogen electrochemical production by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of sodium molybdate in the Na(OH) electrolyte, Ni–Co alloys were used as cathodes for hydrogen evolution reaction. Afterwards a comparison between hydrogen overvoltage measured on Ni–Co alloys with and without in situ activation has been made. The in situ activation clearly shows an improvement of electrocatalytic properties of Ni–Co alloys for hydrogen evolution reaction. Depending on the alloy the best conditions are reached with different amounts of sodium molybdate in the electrolyte. The values of exchange current density for Ni–Co alloys without Mo, are an average of about 4.1 10−6 A/cm2, while by using in situ activation, these values are about 3.5·10−4 A/cm2. Therefore, exchange current density presents a value nearly one hundred-fold higher when molybdate ions are present in solution. Moreover, two Tafel slope values have been determined for HER on Ni–Co alloys with and without Mo in situ activation. Those Tafel slope values are different, so as their range of both overvoltage and current density, probably highlighting a different kinetic mechanism.  相似文献   

18.
Cu doped MoS2 (Cu–MoS2)/reduced graphene oxide (rGO) (Cu–MoS2/rGO) hybrid material is fabricated by a facile one-step solvothermal method. The X-ray diffraction (XRD) results suggest that the doping of Cu does not alter the crystal structure of MoS2. X-ray photoelectron spectroscopy (XPS) analysis reveal that the doping of Cu atoms influences the electronic structure of MoS2, which is favorable to increase active sites of edges. Electrochemical impedance spectroscopy (EIS) results indicate that Cu–MoS2/rGO performed a faster charge-transfer in comparison to MoS2/rGO hybrid. In addition, the resultant Cu–MoS2/rGO catalyst with Cu/Mo mole ratio of 9% exhibits a lower overpotential of 199 mV at 10 mA cm−2, small Tafel slop of 44 mV dec−1 and cycling stability, indicative of enhanced electrocatalytic activity towards HER. The improved performance is attributed to the increased active sites and a synergistic effect between copper and molybdenum, leading to electronic structure change and charge redistribution of MoS2.  相似文献   

19.
Ternary Ni–P–La alloy was synthesized by the co-electrodeposition method on the copper substrate. The energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used for characterization of the synthesized alloy. The electrochemical performance of the novel alloy was investigated based on electrochemical data obtained from steady-state polarization, Tafel curves, linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) in alkaline solution and at ambient temperature. The results showed that the microstructural properties play a vital purpose in determining the electrocatalytic activity of the novel alloys. Also, the HER on investigated alloys was performed via the Volmer-Heyrovsky mechanism and Volmer step as RDS in this work. Ni–P–La catalyst was specified by ƞ250 = −139.0 mV, b = −93.0 mV dec−1, and jo = −181.0 μA cm−2. The results revealed that the Ni–P–La catalysts have a high potential for HER electrocatalysts in 1M NaOH solution.  相似文献   

20.
Fe2O3–TiO2 composite incorporated NiP coating is a known promising catalytic coating for electrocatalytic Hydrogen Evolution Reaction (HER). It is explored in the present study that the activity of the coating can be enhanced by incorporation of rGO. The Fe2O3–TiO2/rGO, electrocatalyst is synthesized by a facile hydrothermal method. Various compositions of the Fe2O3–TiO2/rGO incorporated NiP coatings on mild steel substrate are developed by a chemical reduction method. The developed Fe2O3–TiO2/rGO composite coating exhibits effective hydrogen evolution reaction activity with a Tafel slope of 98 mV dec−1 and a low overpotential of 96 mV at a current density of 10 mA cm−2. The hydrogen evolution reaction mechanism comprises of Volmer (adsorption of Hydrogen atom) followed by Heyrovskii (reduction to H2). The enhanced catalytic activity by the incorporation of rGO into the coating is due to three dimensional projections of nano Fe2O3–TiO2 on the folded surface of rGO. It effectively enhances the electrochemically active surface area of the coated electrode. The electrode is highly stable during alkaline HER. These results reveal that Fe2O3–TiO2/rGO can be treated as an effective electrocatalyst during HER from alkaline solutions. The conclusions pave the way for exploration of new similar catalysts for other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号