首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The focus of this study is the use of Machine Learning methods to forecast Solar Hydrogen production potential for the Islamabad region of Pakistan. For this purpose, we chose a Photovoltaic-Electrolytic (PV-E) system to forecast electricity and, hence, hydrogen production. The weather data used for forecasting and simulation were recorded with precise meteorological instruments stationed in Islamabad, over the course of 13 and a half months. Out of the three tested algorithms, Prophet performs the best with Mean Absolute Percentage Error of 3.7%, forecasting a daily average Hydrogen production of 93.3 × 103 kg/Km2. Although, the forecast in this study is made for the month of August and September, during which the local season moves towards winter, this study demonstrates solar hydrogen production, as a green energy source, has a tremendous potential in this region.  相似文献   

2.
A comprehensive life cycle assessment (LCA) is carried out for three methods of hydrogen production by solar energy: hydrogen production by PEM water electrolysis coupling photothermal power generation, hydrogen production by PEM water electrolysis coupling photovoltaic power generation, and hydrogen production by thermochemical water splitting method using S–I cycle coupling solar photothermal technology. The assessment also contains an evaluation of four environmental factors which are global warming potential, acidification potential, ozone depletion potential, and nutrient enrichment potential. After conducting a quantitative analysis of all three methods with environmental factors being considered, a conclusion has been drawn: The global warming potential and the acidification potential of the thermochemical water splitting by S–I cycle coupling solar photothermal technology are 1.02 kg CO2-eq and 6.56E-3 kg SO2-eq. And this method has significant advantages in the environmental impact of the whole ecosystem.  相似文献   

3.
A life cycle assessment (LCA) of one proposed method of hydrogen production—the high temperature electrolysis of water vapor—is presented in this paper. High temperature electrolysis offers an advantage of higher energy efficiency over the conventional low-temperature alkaline electrolysis due to reduced cell potential and consequent electrical energy requirements. The primary energy source for the electrolysis will be advanced nuclear reactors operating at temperatures corresponding to those required for the high temperature electrolysis. The LCA examines the environmental impact of the combined advanced nuclear-high temperature electrolysis plant, focusing upon quantifying the emissions of carbon dioxide, sulfur dioxide, and nitrogen oxides per kilogram of hydrogen produced. The results are presented in terms of the global warming potential (GWP) and the acidification potential (AP) of the system. The GWP for the system is 2000 g carbon dioxide equivalent and the AP, 0.15 g equivalents of hydrogen ion equivalent per kilogram of hydrogen produced. The GWP and AP of this process are one-sixth and one-third, respectively, of those for the hydrogen production by steam reforming of natural gas, and are comparable to producing hydrogen from wind- or hydro-electricity powered conventional electrolysis.  相似文献   

4.
In this study, a techno-economic analysis of the capacity of Morocco to produce hydrogen from solar energy has been conducted. For this reason, a Photovoltaic-electrolyze system was selected and the electricity and hydrogen production were simulated for 76 sites scattered all over the country. The Global Horizontal Irradiation (GHI) data used for the simulation were extracted from the CAMS-Rad satellite database and meteorological stations at ground level.Before simulations, the accuracy of the GHI values from the satellite dataset has been checked, and their uncertainties was calculated against accurate data measured in-situ. After that, the simulated values of the hydrogen mass were interpolated using a GIS software to create a Hydrogen production map of Morocco. Finally, an economical investigation of electricity and hydrogen production costs has been conducted by calculating the LCOE and LCOH2.Results show that the satellite dataset has a mean average deviation of 6.8% which is a very acceptable error rang. Also, it was found that Morocco have a high potential for hydrogen production, with a daily annual production that varies between 6489 and 8308 Tons/km2. Moreover, the cost of electricity and hydrogen production in the country are in the range of 0.077–0.099 $/kWh and 5.79–4.64 $/Kg respectively.The findings of this study are with high importance as they provide an overall perspective of the country potential of hydrogen production for policy makers and investors, and it was motivated by the lack of information on the subject in the literature since it's, at the best of our knowledge, the first study assessing the hydrogen production from solar for the whole country.  相似文献   

5.
Fossil fuels use has caused serious environmental impacts worldwide, mainly related with the greenhouse effect intensification. One strategy to mitigate such impacts is the use of hydrogen in combustion processes. Additionally, hydrogen can be utilized as an energy vector for storage purposes and is also classified as a fuel of the future, due to the low emission of pollutants into the atmosphere. The present paper shows results of a computational simulation carried out for the state of Ceará, Brazil, considering scenarios for the use of electrolytic hydrogen obtained with the use of photovoltaic (PV) modules and wind energy converters, as a substitute of fluid fossil fuels.  相似文献   

6.
Concentrated solar thermal technology is considered a very promising renewable energy technology due to its capability of producing heat and electricity and of its straightforward coupling to thermal storage devices. Conventionally, this approach is mostly used for power generation. When coupled with the right conversion process, it can be also used to produce methanol. Indeed methanol is a good alternative fuel for high compression ratio engines. Its high burning velocity and the large expansion occurring during combustion leads to higher efficiency compared to operation with conventional fuels. This study is focused on the system level modeling of methanol production using hydrogen and carbon monoxide produced with cerium oxide solar thermochemical cycle which is expected to be CO2 free. A techno-economic assessment of the overall process is done for the first time. The thermochemical redox cycle is operated in a solar receiver-reactor with concentrated solar heat to produce hydrogen and carbon monoxide as the main constituents of synthesis gas. Afterwards, the synthesis gas is turned into methanol whereas the methanol production process is CO2 free. The production pathway was modeled and simulations were carried out using process simulation software for MW-scale methanol production plant. The methanol production from synthesis gas utilizes plug-flow reactor. Optimum parameters of reactors are calculated. The solar methanol production plant is designed for the location Almeria, Spain. To assess the plant, economic analysis has been carried out. The results of the simulation show that it is possible to produce 27.81 million liter methanol with a 350 MWth solar tower plant. It is found out that to operate this plant at base case scenario, 880685 m2 of mirror's facets are needed with a solar tower height of 220 m. In this scenario a production cost of 1.14 €/l Methanol is predicted.  相似文献   

7.
Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. Its eco-friendly production is really crucial for better environment and sustainable development. In this paper, various types of hydrogen production methods namely solar thermal (high temperature and low temperature), photovoltaic, photoelecrtolysis, biophotolysis etc are discussed. A brief study of various hydrogen production processes have been carried out. Various solar-based hydrogen production processes are assessed and compared for their merits and demerits in terms of exergy efficiency and sustainability factor. For a case study the exergy efficiency of hydrogen production process and the hydrogen system is discussed in terms of sustainability.  相似文献   

8.
A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.  相似文献   

9.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

10.
This study is directed to specifically clear on the data's parametric effect on the hydrogen production utilizing the sun based energy through the water electrolysis. The Analysis of Variance (ANOVA) technique is used to check and verify on the potentials of other factual demonstrative devices with respect to the real and anticipated quality, the reaction in the middle of residuals and the anticipated 3-D surface and shape plot investigation. The database of the created model was created in view of the profound study to be carried out. A factual model was produced and an exploratory acceptance of the investigation of polynomials was set up by applying the Response Surface Methodology (RSM). The factual investigation of the informative parameters and the resulting reactions demonstrated that the proposed model and the analytical results would appropriately indicate an anticipated predominant fit.  相似文献   

11.
This article considers Algeria as a case study for the evaluation of the solar hydrogen production potential. The study relates to the design of a hydrogen generating station by water electrolysis whose energy resources are solar. The electricity supply is done by a solar tower power plant. The numerical simulation of the hydrogen production for the installation proposed is made while being based on the characteristic equations governing the electrolysis of water, hydraulic pumping system and the solar tower. The hydrogen production rate is given for various values of the solar radiation and several sites of Algeria. The results obtained by the established computer code, and of which the required goal is the determination of the most favorable conditions for a better production of hydrogen, are presented and discussed.  相似文献   

12.
The present study develops a new solar and geothermal based integrated system, comprising absorption cooling system, organic Rankine cycle (ORC), a solar-driven system and hydrogen production units. The system is designed to generate six outputs namely, power, cooling, heating, drying air, hydrogen and domestic hot water. Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. In this paper, AMIS(AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulphide” in Italian language) technology is used for abatement of mercury and producing of hydrogen from H2S. The present system is assessed both energetically and exergetically. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. The highest overall energy and exergy efficiencies are calculated to be 78.37% and 58.40% in the storing period, respectively. Furthermore, the effects of changing various system parameters on the energy and exergy efficiencies of the overall system and its subsystems are examined accordingly.  相似文献   

13.
Nuclear energy can be used as the primary energy source in centralized hydrogen production through high-temperature thermochemical processes, water electrolysis, or high-temperature steam electrolysis. Energy efficiency is important in providing hydrogen economically and in a climate friendly manner. High operating temperatures are needed for more efficient thermochemical and electrochemical hydrogen production using nuclear energy. Therefore, high-temperature reactors, such as the gas-cooled, molten-salt-cooled and liquid-metal-cooled reactor technologies, are the candidates for use in hydrogen production. Several candidate technologies that span the range from well developed to conceptual are compared in our analysis. Among these alternatives, high-temperature steam electrolysis (HTSE) coupled to an advanced gas reactor cooled by supercritical CO2 (S-CO2) and equipped with a supercritical CO2 power conversion cycle has the potential to provide higher energy efficiency at a lower temperature range than the other alternatives.  相似文献   

14.
Recent years have witnessed an increasing interest in hydrogen production using nuclear energy. A number of countries are actively exploring the option of nuclear hydrogen production and have established concrete roadmaps for near and far term achievements. This paper presents a summary of information presented at some IAEA technical meetings on status of nuclear hydrogen production including ongoing related R&D activities in Member States. The paper highlights, in addition, the IAEA hydrogen economic evaluation programme (HEEP) which has recently been developed under agreement and in collaboration with the BHABHA Atomic Research Centre (BARC). HEEP software can be used to perform the economics of the most promising processes for hydrogen production. Current processes considered in HEEP are: high and low temperature electrolysis, thermo-chemical processes including S-I process, conventional electrolysis and steam reforming. HEEP software is also suitable for comparative between nuclear and fossil energy sources, and for solely hydrogen production or cogeneration with electricity. The HEEP modelling includes various aspects of hydrogen economy including storage, transport, and distribution with options to eliminate or include specific details as required by the users.  相似文献   

15.
Hydrogen production from the electrolysis of water by sea or lake waters used as electrolyte plays a crucial role in providing sustainable hydrogen production. Production of hydrogen from these natural sources is highly utilized from small scale to complex applications due to water resources' inconsumable potential. In this study, the hydrogen production potential of Turkey's different regions such as the Black Sea, Aegean Sea, Marmara Sea, Mediterranean Sea, Lake Van, Ağcaşar Dam, Yeşilırmak, and Kızılırmak rivers are investigated. Solar energy potential values are used as the current sources for simulating their renewable energy hydrogen production values. According to the results, higher hydrogen production rates are obtained from the Marmara and Lake Van regions. It is concluded that the hydrogen production potential is highly dependent on the pH values of the water source and the salinity rate of seawater that is descending from the Mediterranean Sea to the Black Sea region. Besides, solar radiation, sunshine duration, and water temperature are the other essential factors. Moreover, Mediterranean Sea water (Içel-Anamur) has about 23% higher hydrogen production than Lake Van and has the most increased hydrogen production by 80 L m-2 in May and June.  相似文献   

16.
Electrolysis is a relatively simple process for obtaining hydrogen and can be combined with use of renewable energy sources, such as solar photovoltaic energy, for clean, sustainable gas production. This study designed a cylindrical electrolytic cell made of acrylic and 304 stainless steel electrodes to produce hydrogen. The electrolyte used was sodium hydroxide (NaOH 2–5 mol L?1), and the direct current voltages applied were 2.0, 2.7, and 3.4 V. The maximum hydrogen production was achieved with 5.0 mol L?1 NaOH and 3.4 V electric voltage. The system was connected to a photovoltaic panel of 20 W and exposed to solar radiation from 10 a.m. to 2 p.m. Approximately 2 L of hydrogen was produced within a period, and an average irradiance of 800.0 W m?2 ± 60 W m?2 was achieved. The system was stable throughout the tests.  相似文献   

17.
Hydrogen is recognized as one of the most promising alternative fuels to meet the energy demand for the future by providing a carbon-free solution. In regards to hydrogen production, there has been increasing interest to develop, innovate and commercialize more efficient, effective and economic methods, systems and applications. Nuclear based hydrogen production options through electrolysis and thermochemical cycles appear to be potentially attractive and sustainable for the expanding hydrogen sector. In the current study, two potential nuclear power plants, which are planned to be built in Akkuyu and Sinop in Turkey, are evaluated for hydrogen production scenarios and cost aspects. These two plants will employ the pressurized water reactors with the electricity production capacities of 4800 MW (consisting of 4 units of 1200 MW) for Akkuyu nuclear power plant and 4480 MW (consisting of 4 units of 1120 MW) for Sinop nuclear power plant. Each of these plants are expected to cost about 20 billion US dollars. In the present study, these two plants are considered for hydrogen production and their cost evaluations by employing the special software entitled “Hydrogen Economic Evaluation Program (HEEP)” developed by International Atomic Energy Agency (IAEA) which includes numerous options for hydrogen generation, storage and transportation. The costs of capital, fuel, electricity, decommissioning and consumables are calculated and evaluated in detail for hydrogen generation, storage and transportation in Turkey. The results show that the amount of hydrogen cost varies from 3.18 $/kg H2 to 6.17 $/kg H2.  相似文献   

18.
A typical problem in Northeast China is that a large amount of surplus electricity has arisen owing to the serious photovoltaic power curtailment phenomenon. To effectively utilize the excess photovoltaic power, a hybrid energy system is proposed that uses surplus electricity to produce hydrogen in this paper. It combines solar energy, hydrogen production system, and Combined Cooling Heating and Power (CCHP) system to realize cooling, heating, power, and hydrogen generation. The system supplies energy for three public buildings in Dalian City, Liaoning Province, China, and the system configuration with the lowest unit energy cost (0.0615$/kWh) was obtained via optimization. Two comparison strategies were used to evaluate the hybrid energy system in terms of unit energy cost, annual total cost, fossil energy consumption, and carbon dioxide emissions. Subsequently, the annual total energy supply, typical daily loads, and cost of the optimized system were analyzed. In conclusion, the system is feasible for small area public buildings, and provides a solution to solve the phenomenon of photovoltaic power curtailment.  相似文献   

19.
In this paper, production of hydrogen from concentrated solar radiation is examined by a laboratory scale solar tower system that is capable of handling continuous flow photocatalysis. The system is built and studied under a solar simulator with an aiming area of 20 × 20 cm2. The fraction of solar spectrum useful for water splitting depends on the energy band gap of the selected photocatalyst. Two types of nano-particulate photocatalysts are used in this work: ZnS (3.6 eV) and CdS (2.4 eV). The effect of light concentration on photocatalysis performance is studied using Alfa Aesar 99.99% pure grade, 325 mesh ZnS nano-particles. An improved quantum efficiency of 73% is obtained as compared to 45% with the same sample under non-concentrated light in a previous study. Only 1.1% of the energy of the solar radiation spectrum can be used by ZnS catalyst. A mixture of CdS and ZnS nano-particulate photocatalysts (both Alfa Aesar 99.99% pure grade, 325 mesh) is used to conduct a parametric study for a wider spectrum capture corresponding to 18% of the incident energy. Hydrogen production increases from 0.1 mmol/h to 0.21 mmol/h when the operating conditions are varied from 25 °C and 101 kPa to 40 °C and 21 kPa absolute pressures. Furthermore, the implementation of a continuous flow process results in an improvement in the energy efficiency by a factor of 5.5 over the batch process.  相似文献   

20.
In today, the basic necessity for the economic and social development of countries is to have a cheap, reliable, sustainable, and environmentally friendly energy source. For this reason, renewable energy sources stand out as the most important key. Solar energy-based multi-energy generation systems are one of the most important options among the current scenarios to prevent global warming. In this presented study, electricity and hydrogen production from a solar collector with medium temperature density is investigated. In this system, 34 pipes evacuated tube solar collector (ETSC) is used for thermal energy generation, organic Rankine cycle (ORC) for electricity generation, and Proton exchanger membrane electrolyzer (PEMe) for hydrogen production. In addition, the energy and exergy efficiencies of the whole system calculated as 51.82% and 16.30%, respectively. Moreover, the amount of hydrogen obtained in PEM is measured as 0.00527 kg/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号