首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The n-butanol fuel, as a renewable and clean biofuel, could ease the energy crisis and decrease the harmful emissions. As another clean and renewable energy, hydrogen properly offset the high HC emissions and the insufficient of dynamic property of pure n-butanol fuel in SI engines, because of the high diffusion coefficient, high adiabatic flame velocity and low heat value. Hydrogen direct injection not only avoids backfire and lower intake efficiency but also promotes to form in-cylinder stratified mixture, which is helpful to enhance combustion and reduce emissions. This experimental study focused on the combustion and emissions characteristics of a hydrogen direct injection stratified n-butanol engine. Three different hydrogen addition fractions (0%, 2.5%, 5%) were used under five different spark timing (10° ,15° ,20° ,25° ,30° CA BTDC). Engine speed and excess air ratio stabled at 1500 rpm and 1.2 respectively. The direct injection timing of the hydrogen was optimized to form a beter stratified mixture. The obtained results demonstrated that brake power and brake thermal efficiency are increased by addition hydrogen directly injected. The BSFC is decreased with the addition of hydrogen. The peak cylinder pressure and the instantaneous heat release rate raises with the increase of the hydrogen addition fraction. In addition, the HC and CO emissions drop while the NOx emissions sharply rise with the addition of hydrogen. As a whole, with hydrogen direct injection, the power and fuel economy performance of n-butanol engine are markedly improved, harmful emissions are partly decreased.  相似文献   

2.
The experiments to determine the effect of fuel-injection timings on engine characteristics and emissions of a DI engine fueled with NG-hydrogen blends (0%, 3%, 5% and 8%) at various engine speeds were conducted. Three injection timings namely 120°, 180° and 300° CA BTDC with a wide open throttle at relative air-fuel ratio, λ = 1.0 were selected. The ignition advance angle was fixed at 30° CA BTDC, while the injection pressure was fixed at 1.4 MPa for all the cases. The tests were firstly performed at low engine speed of 2000 rpm to determine the engine characteristics and emissions. The results showed that the engine performance (e.g. Brake Torque, Brake Power and BMEP), the cylinder pressure and the heat release have the highest values at the injection timing of 180° CA BTDC, followed by the 300° CA BTDC and the 120° CA BTDC. The NOx emission was found to be highest at the injection timing of 180° CA BTDC. The THC and CO emissions were found to decrease while the CO2 emission increased with the advancement in the injection timing. The addition of a small amount of hydrogen to the natural gas was found to increase the engine performance, enhance combustion and reduce emissions for any selected injection timings. Secondly, the tests were carried out at variable engine speeds (i.e. 2000 rpm-4000 rpm) in order to further investigate the engine performance. The injection timings of 180° and 300° CA BTDC with CNG-H2 blends were only selected for comparisons. The injection timing of the 300° CA BTDC was discovered to yield better engine performance as compared to the 180° CA BTDC injection timing after a cutoff engine speed of approximately 2500 rpm.  相似文献   

3.
A numerical study on effects of hydrogen direct injection on hydrogen mixture distribution, combustion and emissions was presented for a gasoline/hydrogen SI engine. Under lean burn conditions, five different direct hydrogen injection timings were applied at low speeds and low loads on SI engines with direct hydrogen injection (HDI) and gasoline port injection. The results were showed as following: firstly, with the increase of hydrogen direct injection timing, the hydrogen concentration near the sparking plug first increases and then decreases, reaching the highest when hydrogen direct injection timing is 120°CA BTDC: Secondly, hydrogen can speed up the combustion rate. The main factor affecting the combustion rate and efficiency is the hydrogen concentration near the sparking plug: Thirdly, in comparing with gasoline, the NOX emissions with hydrogen addition increase by an average of 115%. For different hydrogen direct injection timings, the NOX emissions of 120°CA BTDC is the highest, which is 29.9% higher than the 75°CA BTDC. The hydrogen addition make the NOX emissions increase in two ways. On the one hand, the average temperature with hydrogen addition is higher. On the other hand, the temperature with hydrogen addition is not homogeneous, which makes the peak of temperature much higher. In a word, the main factor of NOX emissions is the size of high temperature zone in the cylinder: Finally, because the combustion is more complete, in comparing with gasoline, hydrogen addition can reduce the CO and HC emissions by 32.2% and 80.4% respectively. Since a more homogeneous hydrogen mixture distribution can influence a lager zone in the cylinder and reduce the wall quenching distance, these emissions decrease with the increase of hydrogen direct injection timing. The CO and HC emissions of 135°CA BTDC decrease by 41.5% and 71.4%, respectively, compared to 75°CA BTDC.  相似文献   

4.
In this paper, a new kind of injection mode, split hydrogen direct injection, was presented for a dual fuel SI engine. Six different first injection proportions (IP1) and five different second injection timings were applied at the condition of excess air ratio of 1, first injection timing of 300°CA BTDC, low speed, low load conditions and the Minimum spark advance for Best Torque (MBT) on a dual fuel SI engine with hydrogen direct injection (HDI) plus port fuel injection (PFI). The result showed that, split hydrogen direct injection can achieve a higher brake thermal efficiency and lower emissions compared with single HDI. In comparison with single HDI, the split hydrogen direct injection can form a controlled stratified condition of hydrogen which could make the combustion more complete and faster. By adding an early spray to form a more homogeneous mixture, the split hydrogen direct injection not only can help to form a flame kernel to make the combustion stable, but also can speed up the combustion rate through the whole combustion process, which can improve the brake thermal efficiency. By split hydrogen direct injection, the torque reaches the highest when the first injection proportion is 33%, which improves by 1.13% on average than that of single HDI. With the delay of second injection timing, the torque increases first and then decreases. With the increase of first injection proportion, the best second injection timing is advanced. Furthermore, by forming a more homogeneous mixture, the split hydrogen direct injection can reduce the quenching distance to reduce the HC emission and reduce the maximum temperature to reduce the NOX. The split hydrogen direct injection can reduce the HC emission by 35.8%, the NOX emissions by 7.3% than that of single HDI.  相似文献   

5.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

6.
The product of gasification of solid biomass, also called syngas is believed to be good fuel for internal combustion engines in the move from the carbon based fuel to zero emission fuels. The only problem is its lower calorific value which is placed at one third of that of compressed natural gas (CNG). There are latest efforts to enhance the hydrogen rich syngas by augmenting it with methane so that the calorific value can be improved. This paper presents experimental results of the effect of the start of fuel injection timing (SOI) on the combustion characteristics, performance and emissions of a direct-injection spark-ignition engine fueled with a 20% methane augmented hydrogen rich syngas of molar ratio of 50% H2 and 50% CO composition. The engine was operated at fully open throttle and the start of fuel injection (SOI) was varied at 90, 120 and 180° before top dead center (BTDC). The experiment was conducted at lean mixture conditions in the low and medium engine speed ranges (1500–2400 RPM). The spark advance was set to the minimum advance for a maximum brake torque in all the test parameters. The methane augmented hydrogen rich syngas was observed to perform well over wide range of operation with SOI = 180°CA BTDC. However, SOI = 120°CA BTDC performed well at lower speeds recording improved performance and emissions. Limitation of operable load was observed for both SOI = 120°CA BTDC and 90°CA BTDC due to an insufficient time for complete injection of fuel at lower relative air–fuel ratio (λ) with higher speeds.  相似文献   

7.
In this paper, the effects of direct water injection (WI) on characteristics of combustion and emission for a hydrogen (H2)-fueled spark ignition (SI) engine were experimentally investigated. The experiments conducted under different amounts of water injection (AWI) and varied water injection timing (WIT). The experimental results showed that in-cylinder pressure decreased, indicated thermal efficiency (ITE) increased, and the flame development (CA0-10) and propagation (CA10-90) periods prolonged when AWI raised. When AIW grew to 4.5 mg/cycle, Nitrogen oxides (NOx) expelled from the original engine decreased by 53.7% when excess air ratio (λ) was 1.15. Early WIT had positive effects on the reduction of NOx emissions. When WIT retarded, in-cylinder pressure increased, ITE decreased and CA0-10 and CA10-90 shortened, NOx emissions rapidly increased.  相似文献   

8.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

9.
Ethanol, as one of the carbon-neutral fuels for spark ignition (SI) engine, has been widely used. Dehydration and purification of ethanol during production process will lead to high energy consumption. If hydrous ethanol can be directly applied to the engine, the cost of use will be greatly reduced. Due to the high latent heat of vaporization of ethanol and water, it is necessary to consider the performance of atomization, evaporation and combustion stability when hydrous ethanol is used in engine. As a zero-carbon fuel, hydrogen has excellent characteristics such as low ignition energy, fast flame propagation speed and wide combustion limit. The combination of hydrous ethanol and hydrogen can reduce the use cost and ensure better combustion performance. Therefore, this study explores the performance of hydrous ethanol/hydrogen in SI combined injection engine. The hydrous ethanol is injected into the intake port and the hydrogen is directly injected into the cylinder during the compression stroke. In this study, we firstly analyze the optimal water blending ratio (ω) of hydrous ethanol, which including 0, 3%, 6%, 9% and 12%. The experimental results show that the hydrous ethanol with 9% water ratio has the best performance without hydrogen addition. Based on the 9% water ratio, the effects of hydrogen blending ratio (0, 5%, 10%, 15% and 20%) on the combustion and emission under different excess air ratio (λ) (1, 1.1, 1.2, 1.3, 1.4). Hydrogen addition can increase the degree of constant volume combustion, so that the maximum cylinder pressure and temperature increase with the increase of the hydrogen blending ratio (HBR). When λ = 1.3 and HBR = 20%, the maximum in-cylinder pressure can be increased by 108.64% compared to pure hydrous ethanol. Hydrogen effectively increases the indicated mean effective pressure (IMEP) and reduces the coefficient of variation of IMEP (COVIMEP). Adding hydrogen can reduce CO and HC emissions, while NOx emissions will increase. When λ = 1.2 and HBR increasing from 0 to 20%, the NOx emissions increase by 106.75%, but it is still less than the NOx emissions of pure hydrous ethanol at λ = 1. On the whole, hydrogen direct injection can improve the combustion performance of hydrous ethanol and achieve stable combustion under lean-burn conditions.  相似文献   

10.
Fuel injection pressure and injection timing are two extensive injection parameters that affect engine performance, combustion, and emissions. This study aims to improve the performance, combustion, and emissions characteristics of a diesel engine by using karanja biodiesel with a flow rate of 10 L per minute (lpm) of enriched hydrogen. In addition, the research mainly focused on the use of biodiesel with hydrogen as an alternative to diesel fuel, which is in rapidly declining demand. The experiments were carried out at a constant speed of 1500 rpm on a single-cylinder, four-stroke, direct injection diesel engine. The experiments are carried out with variable fuel injection pressure of 220, 240, and 260 bar, and injection timings of 21, 23, and 25 °CA before top dead center (bTDC). Results show that karanja biodiesel with enriched hydrogen (KB20H10) increases BTE by 4% than diesel fuel at 240 bar injection pressure and 23° CA bTDC injection timing. For blend KB20H10, the emissions of UHC, CO, and smoke opacity are 33%, 16%, and 28.7% lower than for diesel. On the other hand NOx emissions, rises by 10.3%. The optimal injection parameters for blend KB20H10 were found to be 240 bar injection pressure and 23 °CA bTDC injection timing based on the significant improvement in performance, combustion, and reduction in exhaust emissions.  相似文献   

11.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

12.
This paper analyzed low emissions on a hydrogen-fueled spark ignition (SI) engine at the cold start period under rich combustion through ignition timing (IT) control. Cold start characteristics of hydrogen-fueled engine were investigated experimentally. The study was performed under different IT. The results demonstrated that when excess air ratio (λ) was 0.7 and IT varied from 25 °CA BTDC to 10 °CA ATDC, the peak cylinder pressure of the first cycle and the successful start time (SST) of hydrogen engine first increased and then decreased with the retard of IT. At 15 °CA BTDC, the hydrogen engine gained the shortest SST and the highest cylinder pressure in the first cycle. Flame development period (CA0-10) first shortened and then lengthened, and flame propagation period (CA10-90) prolonged when IT gradually retarded. The average NOx emissions efficiently reduced by 90.2%, HC and CO emissions caused by the evaporated lubricant oil reduced individually by 33.8% and 19.7% in the first 6 s during the cold start process with the retard of IT. Especially when IT delayed from 25 °CA BTDC to 15 °CA BTDC, the effect of IT on HC emissions was significant.  相似文献   

13.
Natural gas/hydrogen blends (NGHB) fuel is considered as one of the ideal alternative fuels for the rotary engine (RE), which can effectively reduce the carbon emissions of RE. Additionally, applying turbulent jet ignition (TJI) mode to RE can significantly increase the combustion rate. The purpose of this study is to numerically investigate the influence of hydrogen injection position (HIP) and hydrogen injection timing (HIT) on the in-cylinder mixture formation, flame propagation and NOx emission of a TJI hydrogen direct injection plus natural gas port injection RE. Therefore, in this paper, a test bench and a 3D dynamic simulation model of the turbulent jet ignition rotary engine (TJI-RE) fueled with NGHB were respectively established. Moreover, the reliability of the 3D simulation model was verified by experimental data. Furthermore, based on the established 3D model, the fuel distribution and flame propagation in the cylinder under different HIPs and HITs were calculated. The results indicated that the HIP and HIT could change the hydrogen distribution by altering the impact position, impact angle, and the strength of vortexes in the cylinder. To improve the flame propagation speed, more hydrogen should be distributed in the pre-chamber. Additionally, a higher concentration of hydrogen in the cylinder should be maintained above the jet orifice. This was not only conducive to the rapid formation of the initial fire core in the pre-chamber, but also significantly improved the combustion rate of the in-cylinder mixture. Compared with other hydrogen injection strategies, the hydrogen injection strategy by using the HIP at the middle of the cylinder block and the HIT of 190oCA(BTDC) could obtained the highest peak value of in-cylinder pressure and the highest NOx emission.  相似文献   

14.
Hydrogen has shown potential for improving the combustion and emission characteristics of the spark ignition (SI) dual-fuel engine. To reduce the additional NOx emissions caused by hydrogen direct injection, in this research, the cooperative control of the addition of hydrogen with exhaust gas recirculation (EGR) in the hydrogen/gasoline combined injection engine was investigated. The results indicate that both the addition of hydrogen and the use of EGR can increase the brake mean effective pressure (BMEP). As the αH2 value increases from 0% to 25%, the maximum BMEP increases by 9%, 12.70%, 16.50%, 11.30%, and 8.20%, respectively, compared with the value without EGR at λ = 1.2. The CA0-10 tends to increase with increases in the EGR rate. However, the effect of EGR in increasing the CA0-10 can be offset by the addition of 15% hydrogen at λ = 1.2. Measurements of the coefficient of variation of the indicated mean effective pressure (COVIMEP) indicate that the addition of hydrogen can effectively extend the EGR limit. Regarding gaseous emissions, NOx emissions, after the introduction of EGR and the addition of hydrogen, are lower than those of pure gasoline without EGR. An 18% EGR rate yields a significant reduction in NOx, reaching maximum decreases of about 82.7%, 77.8%, and 60% compared to values without EGR at λ = 1.0, 1.2, and 1.4, respectively. As the EGR rate increases, the hydrocarbon (HC) emissions continuously increase, whereas a blend of 5% hydrogen can significantly reduce the HC emissions at high EGR rates at λ = 1.4. Finally, according to combustion and emissions, the coupling of a 25% addition of hydrogen with 30% EGR at λ = 1.2, and the coupling of a 20% addition of hydrogen with an 18% EGR rate at λ = 1.4 yield the best results.  相似文献   

15.
This paper focuses on optimizing the hydrogen TMI (timed manifold injection) system through valve lift law and hydrogen injection parameters (pressure, injection inclination and timing) in order to prevent backfire phenomena and improve the volumetric efficiency and mixture formation quality of a dual fuel diesel engine operating at high load and high hydrogen energy share. This was achieved through a numerical simulation using CFD code ANSYS Fluent, developed for a single cylinder hydrogen-diesel dual fuel engine, at constant engine speed of 1500 rpm, 90% of load and 42.5% hydrogen energy share. The developed tool was validated using experimental data. As a results, the operating conditions of maximum valve lift = 10.60 mm and inlet valve closing = 30 °CA ABDC (MVL10 IVC30) prevent the engine from backfire and pre-ignition, and ensure a high volumetric efficiency. Moreover, a hydrogen start of injection of 60 °CA ATDC (HSOI60) is appropriate to provide a pre-cooling effect and thus, reduce the pre-ignition sources and helps to quench any hot residual combustion products. While, the hydrogen injection pressure of 2.7 bar and an inclination of 60°, stimulate a better quality of hydrogen-air mixture. Afterwards, a comparison between combustion characteristics of the optimized hydrogen-diesel dual fuel mode and the baseline (diesel mode) was conducted. The result was, under dual fuel mode there is an increase in combustion characteristics and NOx emissions as well as a decrease in CO2 emissions. For further improvement of dual fuel mode, retarding diesel start of injection (DSOI) strategy was used.  相似文献   

16.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ? = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.  相似文献   

17.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

18.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

19.
The comparative study on performance of the hydrogen/gasoline and hydrogen/n-butanol rotary engines was conducted in the present paper. Considering the stable operation of the engine, for both hydrogen/gasoline case and hydrogen/n-butanol case, the operating conditions were set at: 4000 rpm (engine speed), 35 kPa (intake pressure) and 30 °CA BTDC (spark timing). The total excess air ratio of mixture was maintained at 1.0 through all the tests. The testing results displayed that hydrogen enrichment improved performance of both gasoline and n-butanol rotary engines. To be more specific, brake thermal efficiency was increased, flame development and propagation periods were shortened, the coefficient of variation in flame propagation period was decreased, and the emissions of HC and CO were decreased. NOx emissions were mildly increased after hydrogen addition. Besides, hydrogen/n-butanol rotary engine possessed the similar performance to hydrogen/gasoline rotary engine.  相似文献   

20.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号