首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Industrial-scale implementation of liquid metal bubble reactors (LMBRs) to produce hydrogen by methane decomposition will require large gas holdups (e.g., 20–30 vol%) and elevated gas pressures (>20 bar) to allow for practical reactor sizes. A realistic reactor design must account for the coupling between reaction kinetics and hydrodynamic effects. The gas holdup is predicted from the superficial gas velocity with a drift flux model that was experimentally corroborated in gas-molten metal mixtures. Large superficial gas velocities (>0.40 m s−1) are required to achieve gas holdups of about 25 vol% in liquid metal baths (LMBs). A noncatalytic kinetic model is developed to provide thermodynamically consistent decomposition rates at methane conversions approaching equilibrium. The coupled model optimizes the LMB dimensions (diameter and length) and the inlet pressure to minimize the volume of liquid metal when the hydrogen production rate, bath temperature, methane conversion, metal composition, and maximum gas holdup are specified. For example, 200 kt a−1 of hydrogen can be produced in an LMBR containing at least 96.5 m3 of molten tin held at 1100 °C in a bath measuring 3.50 m in diameter and 14.3 m in length, with an inlet methane pressure of 57.8 bar resulting in an average gas holdup of 29.7 vol% and a methane conversion of 65%.  相似文献   

2.
    
Catalytic approach for methane decomposition can be seriously considered as a promising process for COx free hydrogen generation. In this study, catalytic methane decomposition was performed using Fe-based catalysts, and catalytic performance tests were carried out in a CH4:N2 flow at 750 and 800 °C. The analyses of reaction products were carried out by a mass spectrometer. For the preparation of Fe-based catalysts, sol-gel method was utilized. Yttria (Y2O3) and alumina (Al2O3) were used as support materials. Theoretical molar ratios (Fe2O3/Y2O3/Al2O3) of the samples C1–C5 were 1:0:0, 1:1:0, 1:1:5, 2:1:4 and 3:1:6, respectively. The characterization analyses of fresh and spent catalysts were performed with XRD, SEM, TPR, TG-FTIR and BET surface analysis techniques. Surface basicity of catalysts was determined via CO2-TPD measurements. In the presence of Fe2O3/Y2O3 and Fe2O3/Y2O3/Al2O3 catalysts, methane conversions of 29% and 4% were achieved at 750 °C. Adding alumina into Fe2O3/Y2O3 catalyst leads to the formation of garnet type crystal structure which reduces catalytic activity.  相似文献   

3.
4.
Solar catalytic decomposition of methane (SCDM) was investigated in a solar furnace facility with different catalysts. The aim of this exploratory study was to investigate the potential of the catalytic methane decomposition approach providing the reaction heat via solar energy at different experimental conditions. All experiments conducted pointed out to the simultaneous production of a gas phase composed only by hydrogen and un-reacted methane with a solid product deposited into the catalyst particles varying upon the catalysts used: nanostructured carbons either in form of carbon nanofibers (CNF) or multi-walled carbon nanotubes (MWCNT) were obtained with the metallic catalyst whereas amorphous carbon was produced using a carbonaceous catalyst. The use of catalysts in the solar assisted methane decomposition present some advantages as compared to the high temperature non-catalytic solar methane decomposition route, mainly derived from the use of lower temperatures (600–950 °C): SCDM yields higher reaction rates, provides an enhancement in process efficiency, avoids the formation of other hydrocarbons (100% selectivity to H2) and increases the quality of the carbonaceous product obtained, when compared to the non-catalytic route.  相似文献   

5.
The application of vanadium-based membranes as the hydrogen separation membrane for a catalytic membrane reactor system was investigated for the direct production of hydrogen from methane. The methane conversion and hydrogen production rates of the catalytic membrane reactor system with Pd-coated 100 μm-thick vanadium-based membranes were comparable with the reactor using 50 μm-thick Pd–Ag alloy membrane at all temperatures examined. The methane conversion rates of the catalytic membrane reactor with the Pd-coated vanadium-based membranes were approximately 35% and 62% at 623 K and 773 K, respectively. The hydrogen production rates were around 660  μmol min−1 at 623 K, and reached over 1710  μmol min−1 at 773 K. The relationship between the methane conversion rates and hydrogen permeation fluxes of the catalytic membrane reactor confirmed that the removal of hydrogen from the reaction site enhances the methane decomposition reaction. Further, the vanadium based membrane exhibited good stability against Fe in a hydrogen containing atmosphere.  相似文献   

6.
A series of experiments was conducted to study the deactivation and regeneration of activated carbon catalyst used for methane thermocatalytic decomposition to produce hydrogen. The catalyst becomes deactivated due to carbon deposition and six decomposition cycles of methane at temperatures of 850 and 950 °C, and five cycles of regeneration by using CO2 at temperatures of 900, 950 and 1000 °C were carried out to evaluate the stability of the catalyst. The experiment was conducted by using a thermobalance by monitoring the mass gain during decomposition or the mass lost during the regeneration with time. The initial activity and the ultimate mass gain of the catalyst decreased after each regeneration cycle at both reaction temperatures of 850 and 950 °C, but the amount is smaller under the more severe regenerating conditions. For the reaction at 950 °C, comparison between the first and sixth reaction cycles shows that the initial activity decreased by 69, 51 and 42%, while the ultimate mass gain decreased by 62%, 36% and 16% when CO2 gasification carried out at 900, 950 and 1000 °C respectively. Temperature -programmed oxidation profiles for the deactivated catalyst at reaction temperature of 950 °C and after several cycles showed two peaks which are attributed to different carbon characteristics, while one peak was obtained when the experiment was carried out at 850 °C. In conclusion, conducting methane decomposition at 950 °C and regeneration at 1000 °C showed the lowest decrease in the mass gain with reaction cycles.  相似文献   

7.
N-ethylcarbazole is one of the most promising liquid organic hydrogen carriers (LOHCs) as it can be catalytically hydrogenated and dehydrogenated at relatively moderate temperatures. In the present work, we report a systematic study on dehydrogenation of perhydro-N-ethylcarbazole over several important supported noble metal catalysts to identify the optimal catalyst for temperature-controlled dehydrogenation. The reaction takes three consecutive stages with two intermediates of octahydro-N-ethylcarbazole and tetrahydro-N-ethylcarbazole. The initial catalytic activity of the selected noble metal catalysts for the dehydrogenation process was found to follow the order of Pd > Pt > Ru > Rh. 100% selectivity toward the final product of N-ethylcarbazole and fully dehydrogenation was achieved over the supported Pt and Pd catalysts. The kinetics of the three stage dehydrogenation processes over the catalysts was studied and the rate constants were derived. The results indicate that the dehydrogenation reaction rate decreases significantly with the reaction stage for all the selected noble catalysts and the conversion from tetrahydro-N-ethylcarbazole to N-ethylcarbazole was found to be the rate-limiting step of the entire reaction process.  相似文献   

8.
    
The hydrogen production capabilities of the membrane reactor combining V-10 mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst are studied. The ammonia conversion is improved by 1.7 times compared to the Ru/Cs2O/Pr6O11 catalyst alone by removing the produced hydrogen through the V-10mol%Fe alloy membrane during the ammonia decomposition. 79% of the hydrogen atoms contained in the ammonia gas are extracted directly as high-purity hydrogen gas. Both the Ru/Cs2O/Pr6O11 catalyst and the V-10 mol% Fe alloy membrane are highly durable, and the initial performance of the hydrogen separation rate lasts for more than 3000 h. The produced hydrogen gas conforms to ISO 14687–2:2019 Grade D for fuel cell vehicles because the ammonia and nitrogen concentrations are less than 0.1 ppm and 100 ppm, respectively.  相似文献   

9.
Thermocatalytic decomposition of methane over activated carbon acting as a catalyst is proposed as a potential alternative for hydrogen production. However, over a certain duration catalyst becomes deactivated due to intensive carbon deposition.  相似文献   

10.
A series of Ni catalysts were prepared from Ni–Al hydrotalcite-like compounds (HTlcs) by varying the Ni/Al molar ratio (1–4) and calcination temperature (773–1173 K) of HTlcs. The catalysts were reduced with H2 at 1073 K and tested for CH4 decomposition at 773–923 K on a thermal gravimeter. Various techniques including N2 physical adsorption, XRD, H2-TPR, XPS, HAADF-STEM, TEM, and Raman were applied to characterize the catalysts and the as-produced carbon. The characterizations show that calcination of Ni–Al HTlcs leads to Ni(Al)O solid solution and minor NiO and/or NiAl2O4 spinel may be formed depending on the Ni/Al ratio and calcination temperature; upon reduction at 1073 K, most nickel species are reduced to metallic Ni. In CH4 decomposition, carbon yield shows a volcano-type dependence on the Ni content with the optimum Ni/Al ratio equal to 3. On the other hand, carbon yield is affected by the calcination temperature of the Ni3Al HTlcs to a small extent. Carbon yield is also significantly affected by the reaction temperature, which decreases remarkably with a rise of temperature to 923 K. TEM and Raman indicate that fish-bone carbon nanofibers are formed at 773–823 K, whereas multi-walled carbon nanotubes are formed at 873–923 K.  相似文献   

11.
Thermocatalytic decomposition (TCD) of methane is a promising method to produce hydrogen. A series of experiments was conducted to study the apparent kinetic, catalyst deactivation and effect of mass diffusion for methane TCD to produce hydrogen using palm-shell carbon based activated carbon (ACPS) as a catalyst in a fixed bed reactor. The experiment was carried out under atmospheric pressure at 775–850 °C, and different methane residence times calculated based on changing the ACPS weight at a constant methane flow rate or changing the methane flow rate at a constant ACPS weight. A reaction order as found substantially differs from that found in literature. A deactivation order of 0.5 and deactivation energy of 177 KJ mol−1 is obtained and the results fitted well with a simple developed model. Mass diffusion transfers are accounted for by calculating change of Weisz modulus with time on-stream using different weights of ACPS or different flow rates of methane. The result showed that Weisz modulus decrease with time and it is attributed to the deposition of carbon produced from methane decomposition. Surface properties measurements of the virgin and deactivated ACPSs indicated that methane decomposition occurs mainly within AC micropores.  相似文献   

12.
    
We introduced a novel combined process of CO2 methanation (METH) and catalytic decomposition of methane (CDM) for simultaneous production of hydrogen (H2) and carbon nanotubes (CNTs) from biogas. In this process, biogas is catalytically upgraded into CH4-rich gas in METH reactor using Ni/CeO2 catalyst, and the obtained CH4-rich gas is subsequently decomposed into H2 and CNTs in CDM reactor over CoMo/MgO catalyst. Among the three different process scenarios proposed, the combined process with a steam condenser equipped between METH and CDM reactors could greatly improve a CNTs productivity. The CNTs production yield increased by more than 2.5-fold, maximizing at 9.08 gCNTs/gCat with a CNTs purity of 90%. The deposited carbon product was characterized as multi-walled carbon nanotubes (MWCNTs) with a surface area of 136.0 m2/g, comparable with commercial CNTs of 199.8 m2/g. The remarkable IG/ID ratio of 2.18 confirms a superior portion of graphitic carbon in the synthesized CNTs upon the commercial CNTs with IG/ID = 0.74. Notably, the CH4 conversion reached 94.5%, while the CO2 conversion achieved 100%, resulting in the H2 yield and H2 purity higher than 90%. This combined process demonstrates a promising route for production of high quality CNTs and high purity H2 with complete CO2 conversion using biogas as abundant renewable energy resources. In addition, the test of raw biogas showed no deactivation of catalyst, justifying the implementation of the developed process for real biogas without purification.  相似文献   

13.
A novel bimodal catalytic membrane reactor (BCMR) consisting of a Ru/γ-Al2O3/α-Al2O3 bimodal catalytic support and a silica separation layer was proposed. The catalytic activity of the support was successfully improved due to enhanced Ru dispersion by the increased specific surface area for the γ-Al2O3/α-Al2O3 bimodal structure. The silica separation layer was prepared via a sol–gel process, showing a H2 permeance of 2.6 × 10−7 mol Pa−1 m−2 s−1, with H2/NH3 and H2/N2 permeance ratios of 120 and 180 at 500 °C. The BCMR was applied to NH3 decomposition for COx-free hydrogen production. When the reaction was carried out with a NH3 feed flow rate of 40 ml min−1 at 450 °C and the reaction pressure was increased from 0.1 to 0.3 MPa, NH3 conversion decreased from 50.8 to 35.5% without H2 extraction mainly due to the increased H2 inhibition effect. With H2 extraction, however, NH3 conversion increased from 68.8 to 74.4% due to the enhanced driving force for H2 permeation through the membrane.  相似文献   

14.
    
Catalytic methane decomposition (CMD) was studied by employing biochar and activated char of biosolids’ origin under different reaction temperatures and methane concentrations. Higher reaction temperatures and lower inlet methane concentrations were found to be favourable for achieving higher methane conversion. A maximum initial methane conversion of 71.0 ± 2.5 and 65.2 ± 2.3% was observed for activated char and biochar, respectively at 900 °C and for 10% CH4 in N2 within the first 0.5 h of experiment. Active sites from oxygen containing carboxylic acid functional groups and smaller pore volume and pore diameter were attributed to assist in higher initial methane conversion for biochar and activated char respectively. However, rapid blockages of active sites and surfaces of biochar and activated char due to carbon formation have caused a rapid decline in methane conversion values in the first 0.5 h. Later on, crystalline nature of the newly formed carbon deposits due to their higher catalytic activity have stabilised methane conversion values for an extended experimental period of 6 h for both biochar and activated char. The final conversion values at the end of 6 h experiment with biochar and activated char at 900 °C and for 10% CH4 in N2, were found to be 40 ± 1.9 and 35 ± 1.6% respectively. Analysing carbon deposits in detail revealed that carbon nanofiber type structures were observed at 700 °C while nanospheres of carbon were found at 900 °C.  相似文献   

15.
Biochar is a potential catalyst for methane decomposition (CMD) owing to its environmental-friendly and application prospects. In this work, the hierarchical porous biochar was prepared by carbonization and H3PO4 activation using Enteromorpha prolifera (EP) as precursor, respectively. The results show that when the ratio of H3PO4/EP is 1.5, the maximum CH4 conversion is 46%, along with hydrogen output of 396 mmol/gcat, which is 5.8 times as that of the unactivated biochar. The characterization results by XPS, Raman, SEM and HRTEM indicate that P element is inserted in carbon layer in the form of C–O–P, resulting in lattice distortion of carbon layer and larger defect density, and C–O–P plays a dominant role in initial CH4 conversion. The mesopores formed by H3PO4 activation alleviate the influence of the deposited carbon on the catalyst and decrease the deactivation rate, thereby exhibiting better performance in CMD.  相似文献   

16.
This study presents a methodology to develop a solar reactor based on the thermodynamics and kinetics of methane decomposition to produce hydrogen with no emissions. The kinetic parameters were obtained in the literature for two cases; methane laden with carbon particles and methane without carbon particles. Results show that there is significant difference in experimentally obtained and theoretically predicted methane conversion. The paper also presents a parametric study on the effects of temperature, pressure and the influence of inert gas composition, which is fed along with methane, on the thermodynamics of methane decomposition. Results show that there is significant effect of the inert gas presence in the feeding gas mixture on the equilibrium of methane conversion and product gas composition. Results also show that higher conversions are obtained when the carbon particles laden with methane. The step-by-step reactor design methodology for homogenous methane decomposition and the parametric study results presented in this paper can provide a very useful tool in guiding a solar reactor design and optimization of process operating conditions.  相似文献   

17.
The thermocatalytic decomposition of methane over activated carbon (AC) is proposed as a potential alternative for the production of hydrogen. The experiments were divided into two parts; the first part was conducted using thermogravimetric analyzer (TGA) while the second part was conducted in a bench-scale unit. For the first part, the research objective is to study the main and interaction effects of decomposition temperature (800-950 °C) and methane partial pressure (0.03-0.63 atm) on the initial specific rate of carbon formation by using statistical method. The experiments were carried out as a general full factorial design consisting of 20 experiments. Quadratic model was developed for initial specific rate of carbon formation in term of temperature and methane partial pressure using response surface methodology. The model’s results show that not only the effects of the main parameters are important, but also the interaction effects between them are significant. For the second part, the main effects of decomposition temperature (775-850 °C) and AC weight (20-120 g) on the initial rate of methane decomposition by using the analysis of variance (ANOVA) were investigated. The results showed that AC weight has higher mean effects than decomposition temperature on the initial rate of methane decomposition.  相似文献   

18.
Catalytic decomposition of liquid fuels (n-octane, iso-octane, 1-octene, toluene and methylcyclohexane) is achieved in a continuous tubular aerosol reactor as a model for the solar initiated production of hydrogen, and easily separable CO free carbonaceous aerosol product. The effects of fuel molecular structure and catalyst concentration on the overall hydrogen yield were studied. Iron aerosol particles used as the catalysts, were produced on-the-fly by thermal decomposition of iron pentacarbonyl. The addition of iron catalyst significantly decreases the onset temperature of hydrogen generation as well as improves the reaction kinetics by lowering the reaction activation energy. The activation energy without and with iron addition was 260 and 100 kJ/mol, respectively representing a decrease of over 60%. We find that with the addition of iron, toluene exhibits the highest hydrogen yield enhancement at 900 °C, with a 6 times yield increase over thermal decomposition. The highest H2 yield obtained was 81% of the theoretical possible, for n-octane at 1050 °C. The general trend in hydrogen yield enhancement is that the higher the non-catalytic thermal decomposition yield, the weaker the catalytic enhancement. The gaseous decomposition products were characterized using a mass spectrometer. An XRD analysis was conducted on the wall deposit to determine the product composition and samples for electron-microscopic analysis were collected exiting the furnace by electrostatically precipitating the aerosol onto a TEM grid.  相似文献   

19.
20.
Catalytic Methane Pyrolysis (CMP) is an innovative method to convert gaseous methane into valuable H2 and carbon products. The catalytic approach to methane pyrolysis has the potential to decrease the required operating temperature for methane decomposition from >1000 °C to under 700 °C. In this work, a novel inexpensive catalyst is discussed that displays low operating temperatures, while still maintaining high reactivity and long proven lifetimes. The kinetics associated with the catalyst's performance are modeled and a correlation was developed for use with practical simulation tools. A techno-economic assessment was conducted applying experimentally determined kinetics for the CMP reaction with the specific catalyst. Two process concepts that utilize CMP using the novel catalyst are presented in this work. Optimizations were considered in these processes and the CO2 emissions and cost of hydrogen production of the two optimized cases, CMP with H2 combustion (CMP-H2) and CMP with CH4 Combustion (CMP-CH4), are compared to that of the current industrial standard for hydrogen production, Steam Methane Reforming with carbon capture and sequestration (SMR-CCS). Both of the proposed concepts convert methane into gaseous hydrogen and valuable carbon products, graphitic carbon to carbon Nano fibers. The carbon price was treated as a variable to determine the sensitivity of hydrogen production cost to the carbon price. The analysis indicates that cost of hydrogen production is highly dependent on the recovery and sale of carbon byproducts. Based on Aspen modeling of these two concepts for large scale hydrogen production (216 tons/day), the cost of hydrogen production, without considering carbon sales, was estimated to be $<3.25/kg, assuming a natural gas price of $7/MMBTU and conservative catalyst cost of $8/kg. Assuming 100% recovery of carbon, the price can be reduced to $0/kg by selling the carbon at <$1/kg. A market assessment suggests that values of graphitic carbon and carbon fibers range from ~$10/kg and ~$25–113/kg, respectively. The cost of H2 production via conventional SMR is ~$2.2/kg when accounting for the cost of CO2 sequestration. The proposed processes produce a maximum of 0–2 kg CO2/kg H2 in contrast to the 10 kg CO2/kg H2 produced via conventional SMR-CCS. The process displays an enormous potential for competitive economics accompanied by reduced greenhouse gas emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号