首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of economical, durable, and efficient oxygen evolution reaction (OER) electrocatalysts is essential for large-scale industrial water electrolysis. Here, a straightforward strategy is proposed to synthesize a series of nickel selenide nanosheets supported on nickel foam (NiSe2/NF) materials by directly selenizing nickel foam substrates at different temperatures under an inert atmosphere. When evaluated as electrocatalysts in OER, the optimal self-supported NiSe2/NF-350 shows an excellent performance in 1.0 M KOH medium with an overpotential of 458 mV at 100 mA cm?2, a small Tafel slope of 45.8 mV dec?1, and a long-term stability for 36 h. Furthermore, the structural and compositional preservation for NiSe2/NF-350 after stability test was also verified by various characterizations.  相似文献   

2.
It is an inevitable choice to find efficient and economically-friendly electrocatalysts to reduce the high overpotential of oxygen evolution reaction (OER), which is the key to improve the energy conversion efficiency of water splitting. Herein, we synthesized Cu2S/Ni3S2 catalysts on nickel foam (NF) with different molar ratios of Ni/Cu by a simple two-step hydrothermal method. Cu2S/Ni3S2-0.5@NF (CS/NS-0.5@NF) effectively reduces the overpotential of OER, displaying small overpotentials (237 mV@100 mA cm?2 and 280 mV@500 mA cm?2) in an alkaline solution, along with a low Tafel slope of 44 mV dec?1. CS/NS-0.5@NF also presents an excellent durability at a relatively high current density of 100 mA cm?2 for 100 h. The excellent performance is benefited by the prominent structural advantages and desirable compositions. The nanosheet has a high electrochemical active surface area and the porous structure is conducive to electrolyte penetration and product release. This work provides an economically-friendly Cu-based sulfide catalyst for effective electrosynthesis of OER.  相似文献   

3.
Oxygen evolution reaction (OER) is an important bottleneck for large-scale acidic water splitting applications due to its sluggish reaction kinetics. Therefore, the development of highly active, stable, and inexpensive electrocatalysts for OER remains a challenge. Herein, we develop the iridium doped Co3O4 (Ir–Co3O4) with low Ir content of 2.88 wt% for efficient acidic OER. Considering systemic characterizations, it is probably concluded that Ir can be uniformly doped into the lattice of Co3O4 and induce a certain distortion. The electrochemical results reveal that Ir–Co3O4 nanoparticles demonstrate significantly enhanced electrocatalytic OER activity and stability in 0.5 M H2SO4 solution compared with pure Co3O4, in which the overpotential at the current density of 10 mA cm−2 decreases from 382 mV to 225 mV and the value of Tafel slope decreases from 101.7 mV dec−1 to 64.1 mV dec−1. Besides, Ir–Co3O4 exhibits excellent electrocatalytic durability for continuous 130 h's test without any activity attenuation. Moreover, this work provides a kind of high-performance acidic OER electrocatalyst for the development of hydrogen energy.  相似文献   

4.
Heterostructured materials with special interfaces and features give a unique character for much electrocatalytic process. In this work, the introduction of exogenous modifier Ni-MOF improved the reaction kinetics and morphology of the NiCo2O4@Ni-MOF/NF catalyst. As-obtained NiCo2O4@Ni-MOF/NF has excellent oxygen evolution reaction (OER) performance and urea oxidation reaction (UOR) performance. The catalyst need overpotential of 340 mV at a current density of 100 mA cm?2 for OER and a potential of 1.31 V at the same current density for UOR. The Tafel slopes of NiCo2O4@Ni-MOF/NF is 38.34 and 15.33 mV dec?1 for OER and UOR respectively, which is more superior than 78.58 and 66.73 mV dec?1 of NiCo2O4/NF. The nanosheets microstructure is beneficial to the adsorption and transport of electrolyte and the presence of a large number of mesoporous channels can also accelerate gas release, and then improves activity of the catalyst. Density functional theory calculation demonstrate that NiCo2O4 plays a role in absorbing water, while the existence of in situ generated NiOOH can promote the electron transfer efficiency. It is synergies of NiCo2O4 and in situ generated NiOOH that enhance the decomposition of water on the surface of the NiCo2O4@Ni-MOF/NF. This investigation provides a new strategy for the application of spinel oxide and MOF materials.  相似文献   

5.
Oxygen evolution reaction is one of the key factors restricting the whole process of electrolysis of water. In this paper, hydrothermal and calcination method are used to in situ grow Co3O4@NiCo2O4 on nickel foam (NF). The formation of Co3O4@NiCo2O4 nanostructures depends on the different hydrothermal time, which further results in the different growth mechanism of Co3O4@NiCo2O4 nanostructures. The result shows that Co3O4@NiCo2O4-8h, as a catalytic material, could play a synergistic role to largely accelerate the electron transfer process and could be efficiently and persistently used in oxygen evolution reaction. The oxygen evolution reaction activity of Co3O4@NiCo2O4-8h material is significantly improved compared with Co3O4, Co3O4@NiCo2O4-6h and Co3O4@NiCo2O4-10 h. When the current density is 50 mA cm−2, the overpotential is only 290 mV for Co3O4@NiCo2O4-8h material. The enhanced activity Co3O4@NiCo2O4-8h is attributed to more active site exposure, rapid charge transfer and synergistic catalysis of Co3O4 and NiCo2O4. This work provides a new idea for the development of efficient, stable and environmentally friendly hybrid catalysts.  相似文献   

6.
The development of highly active and stable electrocatalysts is essential to solve energy and environmental problems and realize sustainable social and economic development. Herein, we synthesized a bimetallic sulfide material by a kinetically controlled low-temperature solid-phase reaction. The bimetallic sulfide improves the conductivity of the electrocatalysts by optimized electronic structure, and the coupling effect at the heterogeneous interface of WS2 and NiSx increases the charge density on the S site at W–S–Ni, making it easier for the electrocatalysts to trap the active material in solution. In addition, nanosheet clusters expose abundant catalytic sites, which together improve hydrogen evolution reaction (HER) for catalytic activity. Optimized WS2/NiSx composite show near-precious metal catalyst activity with an overpotential at 10 mA cm?2 of only 72 mV in alkaline media, which exhibits excellent catalytic stability and outperforms most non-precious metal electrocatalysts.  相似文献   

7.
Efficient oxygen evolution reaction (OER) electrocatalysts with non-noble metals are very critical for the large-scale exploitation of electrocatalytic hydrogen production systems. To improve the catalytic activity of OER electrocatalysts, several design strategies, such as construction of nanostructures, porous structures and composite materials have been proposed. Herein, spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets (GNs) are prepared by a simple solvothermal synthesis method as non-noble metal electrocatalysts for OER. The present NiCo2O4/GNs composite integrates multiple advantages of nanostructures, porous structures and composite materials, including high surface area, abundant catalytic sites and high stability. Benefiting from the favorable features, the NiCo2O4/GNs composite exhibits a better OER performance than NiCo2O4 and RuO2 in alkaline medium, which has a low onset potential (1.50 V), a small Tafel slope (137 mV dec−1). The present work opens a new window for the construction of the carbon-supported 3-D nanostructure of transition metal catalysts with optimizable electrocatalytic performances for electrocatalytic hydrogen production.  相似文献   

8.
Transition metal sulfides and their hybrids are promising alternative to precious metal catalyst for the oxygen evolution reaction (OER). Herein, the high-density Co9S8 nanoparticles (NPs) embedded in N-doped carbon has been prepared by using surface-engineered zeolitic imidazolate framework-9 (ZIF-9) nanosheets as precursor. The surface of ZIF-9 was modified with TAA, which is able to create chemical barrier and prevents metal from aggregation in the subsequent pyrolysis, thus making small Co9S8 NPs densely anchored on carbon layers. Arising from the unique structure, Co9S8@NC affords an optimized electronic structure and rich effective reactive sites for OER. As expected, Co9S8@NC exhibits small overpotential of 264 mV at 10 mA cm−2, low Tafel slope of 68.4 mV dec−1, and superior stability for alkaline OER (0.1 M KOH). The electrolysis cell, which was equipped with Co9S8@NC cathode and Pt/C anode, shows low water splitting voltage of 1.58 V at 10 mA cm−2 in 1.0 M KOH. This work employs an efficacious surface engineering strategy to design metal sulfide-based electrocatalysts for enhancing OER performance.  相似文献   

9.
Designing appropriate oxygen evolution reaction (OER) electrocatalysts to meet the requirements of high efficiency, long-term durability, and low cost remains the challenge for scientific community. Cobalt oxide (Co3O4) has been proven as a promising candidate for OER with attractive activity and stability in alkaline media. In this study, flower-like Co3O4 microstrips have been successfully prepared and directly embedded in Co foam (denoted as Co3O4@Co foam) by a green and facile two-step strategy including hydrothermal treatment and subsequent annealing process under relatively low temperatures. It demonstrates that the OER performance of the Co3O4@Co foam electrode can rival to the commercial RuO2 on glassy carbon electrode. The Co3O4@Co foam electrode displays high OER activity with a low overpotential of 273 mV at a current density of 10 mA cm−2, and a low Tafel slope of 61.8 mV dec−1. The flower-like Co3O4 microstrips greatly increase the active surface area to expose more active sites, and the directly growth of Co3O4 microstrips on Co foam with intimate contact improves the electron transport and ensures the stability of the Co3O4@Co foam electrode.  相似文献   

10.
A facile two-step method has been applied to synthesize novel binary metal NiCoS nanorods supported on nickel foam (NF) as electrocatalysts for oxygen evolution reaction (OER). Firstly, electrodeposition process is conducted to fabricate binary Ni-Co hydroxides on NF (NiCo/NF). Then, a hydrothermal sulfuration of NiCo/NF has been adopted to prepare NiCoS nanorods arrays uniformly grown on the surface of NF (NiCoS/NF). XRD indicates that NiCoS/NF has mixed crystal phases of Ni3S2, CoS and Co9S8. SEM images display the uniform NiCoS nanorods composed of many vertical nanosheets on the surface, implying more exposed active sites. OER measurements demonstrate that NiCoS/NF has better activity with an overpotential of 370 mV to reach 100 mA cm?2 than NiCo/NF and CoSx/NF. Electrochemical impedance spectroscopy (EIS) tests confirm the faster charge-transfer rate of NiCoS/NF and smaller Tafel slope derived from binary NiCoS, implying the excellent electrocatalytic performances of binary metal sulfides.  相似文献   

11.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   

12.
A NiFe bimetallic metal organic framework (MOF) deposited on nickel foam and processed by low-pressure plasmas with 95%Ar+5%H2, pure Ar, and 95%Ar+5%O2 gases is used as an electrocatalyst for the oxygen evolution reaction. An alkaline solution (1 M KOH) with 95%Ar+5%H2 plasma processed NiFe-MOFs/NF exhibits the best electrocatalytic performance with the lowest overpotential of 149 mV at a current density of 10 mA cm?2 and a Tafel slope of 54 mV dec?1. Furthermore, electrical impedance spectroscopy and cyclic voltammetry show that after 95%Ar+5%H2 plasma treatment, the interfacial impedance greatly reduces, and the electrical double-layer capacitance slightly increased.  相似文献   

13.
Enhancing the catalytic activity of Co3O4 electrocatalysts featuring abundant oxygen vacancies is required to enable their application in oxygen evolution reaction (OER). However, developing a harmless defect engineering strategy based on mild conditions to realize such an enhancement remains a challenge. Here, ultrathin Co3O4 nanosheets with abundant oxygen vacancies were prepared through a simple two-step method comprising a hydrothermal process and pre-oxidation to study the catalytic activity of the nanosheets toward OER. The ultrathin sheet structure and the Co3O4 nanosheets surface provide abundant active sites. The oxygen vacancy not only improves the catalyst activity, but also improves the electron transfer efficiency. These advantages make ultrathin Co3O4 nanosheets with abundant oxygen vacancies an excellent electrocatalyst for oxygen evolution. In an alkaline medium, ultrathin Co3O4 nanosheets exhibited excellent OER catalytic activity, with a small overpotential (367 mV for 10 mA/cm2) and faster reaction kinetics (65 mV/dec).Moreover, the electrocatalyst still maintained 68% of its original catalytic activity after 24 h operation. This work provides an extensive and reliable method for the preparation of low-cost and highly efficient OER electrocatalysts.  相似文献   

14.
In this work, CoP/NF is synthesized at different temperature (250 °C, 300 °C, 350 °C) (denoted as CoP/NF-T, T = 250, 300, 350). Then, CoP/NF-300 with the best performance towards hydrogen evolution reaction (HER), is used to synthesize compounds with different ratio of reduced graphene oxide (rGO) (CoP/rGO/NF-X, X (quality ratio of rGO/CoP) = 1,3,5). In terms of morphology, under the synergistic effect of rGO, uniform and dense CoP provides the possibility to increase the electrochemical area. While CoP/rGO/NF-3 shows the minimum overpotential of 136 mV to drive 50 mA/cm, and the smallest Tafel slope 135 mV/dec among as-synthesized materials. Furthermore, CoP/rGO/NF-3 has good stability during at least 25 h. These result can be construed as the large electrochemical active area, high conductivity and long-time stability.  相似文献   

15.
The efficiency and stability of electrocatalysts are the key factors for measuring oxygen evolution reaction. In this work, the MnCo2O4 structure assembled from well-arranged nanowires or nanosheet arrays has been grown vertically on nickel foam by in-situ hydrothermal method. Interestingly, different morphology of MnCo2O4 can be easily regulated by adding NH4F to a mixed solvent to achieve conversion from nanowires to nanosheets. In addition, further synthesis of unique three-dimensional hierarchical core/shell MnCo2O4@CoS nanowires or nanosheets arrays was performed primarily by electrochemical deposition. Both MnCo2O4@CoS-7 cycles nanowires and MnCo2O4@CoS-7 cycles nanosheets exhibit high efficiency and long-lasting stability for the oxygen oxidation reaction. The lower overpotential of only 280 mV and 270 mV at 20 mA cm−2 for the MnCo2O4@CoS-7 cycles nanowires and MnCo2O4@CoS-7 cycles nanosheets were obtained with lower Tafel slopes of 139. 19 mV dec−1 and 131.81 mV dec−1 in 1.0 M potassium hydroxide respectively comparing with our other MnCo2O4@CoS catalysts. The results demonstrate that the crystal morphology of MnCo2O4@CoS does not significantly influence their electrocatalytic activity in water oxidation reactions by comparing nanostructured MnCo2O4@CoS nanowires and MnCo2O4@CoS nanosheets. The high catalytic activity of the MnCo2O4@CoS nanoarrays is attributed to the possession of more active sites, larger specific surface area, abundant oxygen vacancy, and fast electron transport rate. Not only that, the durability of the MnCo2O4@CoS nanoarrays is also excellent after continuous oxygen evolution test of 1000 cycles. The results of XRD, SEM and XPS show that MnCo2O4@CoS-7 cycles nanowires and MnCo2O4@CoS-7 cycles nanosheets materials can be used as a highly efficient and stable catalyst for oxygen evolution reaction.  相似文献   

16.
In this study, cryptomelane-type (1D) MnO2 was doped with boron powder by ball-milling in an inert organic solvent under various experimental conditions. The structural, thermal, morphological, and surface features of samples prepared by the ball-milling method were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and surface measurements. The electrocatalytic oxygen evolution reaction (OER) performances of the samples were tested and compared with the bare cryptomelane to reveal the effect of boron doping into manganese oxide. It was found that boron particles transformed to trigonal BO3 units in the cryptomelane structure via mechanical activation, and accordingly, the oxidation state of manganese in this structure relatively changed. The 0.25% B-doped cryptomelane sample prepared at 12 h grinding time exhibited the overpotential of 425 mV at a current density of 1 mAcm−2 with a Tafel slope of ∼95 mV dec−1. It showed a remarkable catalytic performance among the other electrocatalysts under neutral pH compared to bare cryptomelane. When the elemental boron doping exceeded 1%, the electrochemical performance dramatically decreased depending on the blocking of the Mn3+ active sites.  相似文献   

17.
In this work, nickel-iron layered double hydroxides nanoflakes are grown on nickel foam by a facile in-situ complexation precipitation method. The fabricated nickel-iron layered double hydroxides/nickel foam with special 3D structure with large electrochemical activated surface area is proposed as a greatly enhance electrode material for oxygen evolution reaction. The electrochemical properties of the as-fabricated nickel-iron layered double hydroxides/nickel foam electrode are evaluated using 1 mol L?1 KOH as electrolyte. The obtained electrochemical results show that the fabricated nickel-iron layered double hydroxides/nickel foam electrode exhibits a low overpotential of 245 mV at current density of 10 mA cm?2 with small Tafel slope of 27 mV dec?1. Also, it displays a much longer durability of 20 h with very small decay of 0.02% as compared with 3D nickel foam, IrO2 and the related catalysts reported. Therefore, this study indicates that the nickel-iron layered double hydroxides/nickel foam is a promising electrode material for oxygen evolution reaction due to its facile preparation method, low cost and environmentally friendly nature.  相似文献   

18.
Rationally designing high-activity catalyst for oxygen evolution reaction (OER) is of primary importance due to its sluggish kinetic process in water splitting. Herein, we report a metallic (V) and nonmetallic (F) double doping in Co3O4 with nanoneedles structure, which is synthesized through facile oil bath and annealing. Electrochemical measurements show that the Co3O4 dopped with fluorine and vanadium (F0.2-V-Co3O4-350) only needs a low overpotential of 320 mV to afford a current density of 10 mA cm?2, which is superior to commercial RuO2. The excellent electrocatalytic performance can be attributed to double doping of vanadium and fluorine which have strong electron absorption effect to optimize the density of electrons in Co3O4. Besides, nanoneedles structure can enlarge exposure of active sites. And its great durability is evaluated through 2000 cycles CV test. Furthermore, the optimal ratio of fluorine to vanadium and different annealing temperatures of the target catalyst are explored reasonably.  相似文献   

19.
Herein, a strongly coupled Cu3P/FeP heterostructure with P-doped carbon derived from MIL-101 was synthesized via a three-step method involving solvothermal, carbonization, and phosphidation processes. The Cu3P/FeP heterostructure serves as a good catalyst because it possesses abundant interfaces between Cu3P and FeP, which enables the exposure of electrocatalytically active sites and tuning of surface electronic configurations. Additionally, the presence of strong heterointerfaces between Cu3P and FeP, and the integration of the P-doped carbon guarantee the high electrical conductivity of the catalyst. Benefiting from these advantages, the Cu3P/FeP electrode exhibited outstanding electrocatalytic activity toward the oxygen evolution reaction (OER), which presents a low overpotential of 315 mV to drive a current density of 10 mA cm−2 in 1.0 M KOH, thus outperforming that of the state-of-the-art RuO2. In addition, the Cu3P/FeP hybrid composite exhibited long-term stability for 50 h. This work provides a new strategy for the design and preparation of transition-metal-based heterostructures and facilitates the development of high-performance energy-related materials.  相似文献   

20.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号