首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the important alternatives to conventional fossil fuel vehicles in the transportation sector is hydrogen fuel cell vehicle (HFCV) technology. One of the most significant obstacles to the widespread use of these vehicles is the hydrogen supply chain network (HSC) infrastructure. In the design of this network, the harm caused by the network to the environment and the security risks that may arise are as important as the associated cost of building it. In this study, an HSC design that will minimize cost, carbon emission and security risk for Turkey is proposed. The problem is modeled using a mixed integer linear programming (MILP). Five different optimization cases are studied when the penetration rate of HFCV is 25%. In the first three cases, the objectives are independently optimized. The multi-objective optimization is addressed in Case 4 and Case 5. Case 4 is solved with epsilon constraint method by employing the results of the first three cases. The most balanced solution found is 88%, 10% and 2% away from the best cost, carbon emission and risk values, respectively. It is observed that the proposed solution has a decentralized network structure where steam methane reforming (SMR) and electrolysis (ELE) production plants are established. In Case 5, the weighted sum method (another multi-objective optimization method) is used and those which gave the closest results to that of the epsilon constraint method are chosen as the associated weights of three objectives. Using these weights, 10 different demand scenarios are studied. It is observed that the HSC has a decentralized structure under almost all demand scenarios.  相似文献   

2.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   

3.
As a highly reactive gas, hydrogen presents significant challenges for its acquisition and safe storage. Consequently, the viability of a sustainable hydrogen economy greatly depends on the development of an efficient, cost-effective method of hydrogen production. One model for addressing this challenge is to deploy portable hydrogen generators for the home. The Princeton University Chapter of the International Association for Hydrogen Energy (IAHE-PU) has designed and created a generator that produces hydrogen through water electrolysis and optimizes cost effectiveness and portability while maximizing hydrogen output.For our proof-of-concept, the system utilizes simple household items with a Sharp ND130UJF 130W solar panel. In our design, Ni electrodes submerged in 8 M KOH solution in six glass containers were utilized to power an external circuit. Over 1 h, our system produced 8.61 L of hydrogen gas at an estimated cost of $8.58 per kilogram of hydrogen gas over the 25-year lifetime of the solar panel.  相似文献   

4.
The aim of this study is to investigate the economic prospects of producing electricity and hydrogen using wind energy under different scenarios. For this, the most essential criteria to investors including Levelized Cost of Wind-generated Electricity (LCOWE), Levelized Cost of Wind-based Hydrogen (LCOWH), payback period, and rate of return are examined. Technical and environmental impacts are factored into the LCOWE formulation to obtain comprehensive insight. Owing to the uncertain nature of future, five degradation rates concerned with wind turbine performance and five likely rates as to the future value of money are investigated under the scenarios of I) utilizing wind electricity to replace fuel oil electricity, II) to replace natural gas electricity and III) without considering environmental penalties. The results indicate that LCOWE would be in the range of 0.0325–0.0755 $/kWh, while the corresponding LCOWH being in the range of 1.375–1.59 $/kg. Moreover, payback period of the related LCOWE and LCOWH would be in the range of 2.55–9.48 yr during the lifetime of wind power plant and 3.91–8.41 yr during that of hydrogen production system, respectively. The corresponding rate of return pertinent to the above-mentioned ones would be respectively in the range of 14.15–23.54% and of 9.87–21.55%.  相似文献   

5.
The European Commission's plan to decarbonize the economy using innovative energy carriers has brought into question whether the national targets for developing electrolysis technologies are sufficiently ambitious to establish a local hydrogen production industry. While several research works have explored the economic viability of individual green hydrogen production and storage facilities in the Western European Member States, only a few studies have examined the prospects of large-scale green hydrogen production units in Poland. In this study, a Monte Carlo-based model is proposed and developed to investigate the underlying economic and technical factors that may impact the success of the Polish green hydrogen strategy. Moreover, it analyzes the economics of renewable hydrogen at different stages of technological development and market adoption. This is achieved by characterizing the local meteorological conditions of Polish NUTS-2 regions and comparing the levelized cost of hydrogen in such regions in 2020, 2030, and 2050. The results show the geographical locations where the deployment of large-scale hydrogen production units will be most cost effective.  相似文献   

6.
Wind power, the most promising renewable energy source in the world, plays an important role in the electricity markets. Wind power curtailment cannot be avoided in some countries due to its output has a special feature of randomness and volatility. Since the excess wind power being converted into hydrogen and sold to the hydrogen market will be the future trend. This study proposes a wind-electrolytic hydrogen storage system to participate in the electricity/hydrogen markets for selling electricity and hydrogen, which can help to improve the benefits of wind power in the electricity markets and addree the wind power curtailment effectively. With considering the uncertainties of wind power outputs and electricity prices, the optimal operation strategy is proposed with the objective of maximizing profits. The scenario-based stochastic method is adopted to describe the uncertainties, and the financial risk is evaluated using conditional value-at-risk. The operational problem of the proposed system is formulated into a mixed-integer linear programming model. Finally, the feasibility of the proposed operational strategy is validated by a case study. The results show that the expected revenue increases with the increase of the hydrogen selling price, indicating that investors can obtain profits by converting electricity into hydrogen. The optimal expected revenue increases by 33.42% when hydrogen price increases from 1.2 DKK/kWh to 1.8 DKK/kWh and the risk factor is equal to 0. Based on the analysis of the results, the importance of hydrogen can be proven.  相似文献   

7.
The use of hydrogen to store electricity is no longer utopian nor merely theoretical. Hydrogen applications such as Power-to-Gas systems are entering the market and some of them are ready to compete with other options in the near future. This means they have indeed a potential for profitability, especially if seen as large-scale storage solutions for the electricity surplus produced by variable renewable energy sources.In this study Power-to-Industry, Power-to-Mobility and Power-to-Power applications are chosen to be investigated and compared through levelized cost of hydrogen to identify the main cost drivers and consequently understand the possible solutions to reduce costs. The feasibility of the applications is discussed and analyzed in Germany, Belgium and Iceland, with mid and long-term perspectives, focusing the analysis on the advantage of scaling up.  相似文献   

8.
The transportation sector, which is largely dependent on oil, is faced with many problems such as the danger of depletion of fossil fuels that are harmful to the environment. Moreover, the situations such as epidemics and war cause excessive fluctuations in oil prices. Therefore, there is a need for new solutions based on alternative energy sources for a sustainable transportation sector. Hydrogen fuel cell electric vehicles (HFCEV) are one of the significant alternatives for an efficient, zero emissions and sustainable transportation system. Considering the potential investment in HFCEV technology, the need for a cost effective, green, and low risk Hydrogen Supply Chain (HSC) network infrastructure is inevitable. In this study, the HSC design of the Turkish transportation sector over a 25-year period (2026–2050) is investigated. The problem is modeled using a multi-period mixed integer linear programming (MIP) model. Three objectives are addresses: cost, carbon dioxide (CO2) emissions and safety risk. In order to consider the uncertainty in the hydrogen demand, five different scenarios are analyzed using fuzzy concept. There are four main results. First, unit hydrogen cost is found to be very high due to low demand and high capital cost in the initial period (2026–2031). Second, HSC network is established in a decentralized setting in all scenario solutions. The level of decentralization gets stronger over time and with increasing demand. Third, short-distance road transport is generally preferred for hydrogen transport. Fourth, since the aim is to minimize cost, CO2 emissions, and risk level, a mixed production strategy based on cost-oriented SMR and zero-emissions-oriented Electrolysis (ELE) is observed in all scenarios.  相似文献   

9.
India is one of the most populous countries in the world, and this has implications for its energy consumption. The country's electricity generation and road transport are mostly dominated by fossil fuels. As such, this study assessed the techno-economics and environmental impact of a solar photovoltaic power plant for both electricity and hydrogen production at five different locations in India (i.e., Chennai, Indore, Kolkata, Ludhiana, and Mumbai). The hydrogen load represents a refueling station for 20 hydrogen fuel cell vehicles with a tank capacity of 5 kg for each location. According to the results, the highest hydrogen production occurred at Kolkata with 82,054 kg/year, followed by Chennai with 79,030 kg/year. Ludhiana, Indore, and Mumbai followed with 78,524 kg/year, 76,935 kg/year and 74,510 kg/year, respectively. The levelized cost of energy (LCOE) for all locations ranges between 0.41 and 0.48 $/kWh. Mumbai recorded the least LCOH of 3.00 $/kg. The total electricity that could be generated from all five cities combined was found to be about 25 GWh per annum, which translates to an avoidable emission of 20,744.07 metric tons of CO2e. Replacing the gasoline that could be used to fuel the vehicles with hydrogen will result in a CO2 reduction potential of 2452.969 tons per annum in India. The findings indicate that the various optimized configurations at the various locations could be economically viable to be developed.  相似文献   

10.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   

11.
There is no doubt that energy will have one of highest priorities in agendas of strategic plans of countries. Since fossil fuels are running out and carbon emissions are more important than ever, researchers seek alternative clean and efficient energy sources. One of the best alternatives is hydrogen. The systems in which hydrogen flows from its production to end users are called hydrogen supply chains (HSC). Since hydrogen is not in active use, its HSC infrastructure is not complete and should be planned very carefully. We study the design of HSC of Turkey to meet the hydrogen demand of the period between 2021 and 2050. Our aim is to minimize total cost of the HSC while meeting the demand of the transportation sector. We address the problem by using a mixed integer programming (MIP) model and derive several insights for the future HSC. The results show that while decentralization (being able to fulfill the demand from local production facilities) is 12% in the first period, this rate raises up to 48% by the end of the planning horizon. Analysis also reveal that almost all grids do not produce and import hydrogen simultaneously, i.e., they either produce or import hydrogen. The results are robust in the sense that solutions of different optimality gaps have minor differences in terms of established facilities.  相似文献   

12.
Hydrogen (H2) generation using Steam Methane Reforming (SMR) is at present the most economical and preferred pathway for commercial H2 generation. This process, however, emits a considerable amount of CO2, ultimately negating the benefit of using H2 as a clean industrial feedstock and energy carrier. That has prompted growing interest in enabling CO2 capture from SMR for either storage or utilisation and producing zero-emission “blue H2”. In this paper, we propose a spatial techno-economic framework for assessing blue hydrogen production SMR hubs with carbon capture, utilisation and storage (CCUS), using Australia as a case study. Australia offers a unique opportunity for developing such ‘blue H2’ hubs given its extensive natural gas resources, availability of known carbon storage reservoirs and an ambitious government target to produce clean/zero-emission H2 at the cost of <A$2 kg?1 by 2030. Our results highlight that the H2 production costs are unsurprisingly dominated by natural gas, with the additional capital requirement of carbon capture and storage (CCS) also playing a critical role. These outcomes are especially pertinent for eastern Australian states, as they are experiencing high natural gas costs and would generally require extensive CO2 transport and storage infrastructure to tap potential storage reservoirs, ultimately resulting in a higher cost of producing H2 (>A$2.7 kgH2?1). On the other hand, Western Australia offers lower gas pricing and relatively lesser storage costs, which would lead to more economically favourable hydrogen production (<A$2.2 kgH2?1). We further explore the possibility of utilising the emissions captured at blue SMR hubs by converting them into formic acid through CO2 electroreduction, yielding revenue that will decrease the cost of blue H2 and reduce the reliance on CO2 storage. Our analysis reveals that formic acid production utilising a 10 MW CO2 electrolyser can potentially reduce H2 production costs by between 4 and 9%. Further cost reduction is possible by scaling the CO2 electrolyser capacity to convert a larger portion of the emissions captured, albeit at the cost of higher capital investment, electricity consumption and saturating the market for formic acid. Thus, carbon utilisation for a range of products with high market demand represents a more promising approach to replacing the need for costly carbon storage. Overall, our modelling framework can be adapted for global application, particularly for regions interested in generating blue H2 and extended to include other CO2 utilisation opportunities and evaluate other hydrogen production technologies.  相似文献   

13.
We compare two models to determine the size of grid units and dispatch in a wind-diesel power system with hydrogen storage. Both take as data 1-year time series of hourly wind speed and electricity demand, and their objective is to minimise cost. Our first model, based on linear programming, generates as output a combination of capacities and a year time series for the dispatch variables. Our second model runs a fixed dispatch rule over several capacity combinations and selects the cheapest option. The dispatch rule can then be improved through comparison with the linear programming solution. At present costs, the hydrogen storage-conversion system is excluded from the solutions, so the interesting operation rules associated with the option of harvesting do not arise. However, the costs of hydrogen storage technologies are decreasing with investment. By running our model with prospective costs for year 2010, we see storage emerge in the optimum, and thus a sample of the operation patterns that will occur in a renewable dominated grid.  相似文献   

14.
The infrastructure of hydrogen presents many challenges and defies that need to be overcome for a successful transition to a future hydrogen economy. These challenges are mainly due to the existence of many technological options for the production, storage, transportation and end users. Given this main reason, it is essential to understand and analyze the hydrogen supply chain (HSC) in advance, in order to detect the important factors that may play increasing role in obtaining the optimal configuration. The objective of this paper is to review the current state of the available approaches for the planning and modeling of the hydrogen infrastructure. The decision support systems for the HSC may vary from paper to paper. In this paper, a classification of models and approaches has been done, and which includes mathematical optimization methods, decision support system based on geographic information system (GIS) and assessment plans to a better transition to HSC. The paper also highlights future challenges for the introduction of hydrogen. Overcoming these challenges may solve problems related to the transition to the future hydrogen economy.  相似文献   

15.
The Republic of Korea government has set yearly targets of hydrogen cars and buses and plans to install hydrogen refueling stations nationwide. This paper proposes a methodology for developing a strategic deployment plan with three mathematical models. For a given target, future refueling demand locations and amount from general road and expressway are systematically estimated. First, the required number of refueling stations to satisfy the target covering ratio of the total demand set by the government is determined by the Station number determination model. Next, the locations of the capacitated stations and the allocation of demand to the stations are determined by the second Max cover and the third p-median models. Since the max covering is more important than minimizing the travel time, the two models are used sequentially. The nationwide hydrogen station deployment plan for the years 2022–2040 obtained by the proposed methodology is reported.  相似文献   

16.
A simulation and design tool applicable to hydrogen powered spark ignition engine systems is introduced in this paper. This software is applicable to single and multi-cylinder engines under steady state or transient operating conditions, and is capable of simulating one-dimensional unsteady chemical species transport through intake and exhaust engine ducting, the induction and combustion of those chemical species, and the engine performance characteristics and emissions which are produced. Results are presented from validation studies carried out on a 1.6 l spark ignition engine converted to operate with manifold-fuelled gaseous hydrogen. These experimental results validate the ability of the simulation to accurately describe the transport of gaseous hydrogen through engine intake ducting, and the displacement of intake air due to hydrogen introduction.  相似文献   

17.
Hydrogen energy storage system (HESS) has excellent potential in high-proportion renewable energy systems due to its high energy density and seasonal storage characteristics. After detailing the volatility of wind speed, irradiance and load, this paper proposes a bi-level optimization model to analyze the economic operation of the wind-photovoltaic-hydrogen hybrid system (WPH-HS). First, the relationship between the source-load output matching and operating conditions of HESS is studied, two evaluation indicators are described, which can be adjusted by wind-solar complementarity on the source side and demand response on the load side. Second, considering the levelized cost of storage (LCOS), the total annual cost (TAC) calculation method of WPH-HS is presented, and this paper provides a new hybrid optimization technology of chaotic search, particle swarm optimization and non-dominated sorting genetic algorithm2. Finally, the system is simulated with the MATLAB software to determine the optimal sizing of components and minimize the LCOS while ensuring the optimal TAC. The simulation results are elaborated in detail. In particular, the added source-load interaction reduces the TAC and LCOS by 7.3% and 10.3%. When two indicators reach 0.03 and 0.1745, the system is economically viable with the LCOS of 0.276 USD/kWh. The hybrid optimization algorithm can achieve better result in fewer iterations.  相似文献   

18.
19.
The optimal design of supply chain networks is often examined based on one or more economic or other criteria (e.g., cost, profit environmental impact, danger, time). However, the efficiency of the derived solutions is often ignored. In this work, a recursive DEA (RDEA) algorithm is presented, which introduces a different way of designing a supply chain network. The selection of possible installed facilities is based on minimum cost and maximum efficiency, through a MILP model. Optimal supply chain structure is obtained when the termination criterion is met, yielding only the efficient solutions, while simultaneously reducing the overall cost. An application of this RDEA algorithm to a biomass supply chain is examined. A comparative study is also presented, demonstrating the results obtained when solving the MILP without the proposed algorithm and with the use of an RDEA.  相似文献   

20.
Due to the growing environmental concern about global warming, there is immense pressure on the metallurgical industry to lower their carbon dioxide emissions. This article evaluates the use of hydrogen, produced by a Hybrid Sulphur process which utilizes nuclear process heat, as a reducing agent in the steel industry. Two commercial steelmaking processes and an alternative one were investigated to resolve what influence nuclear hydrogen would have on the carbon dioxide emissions and the production cost of these processes. Overall it was found the steel industry could benefit a great deal from utilizing nuclear hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号