首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Three-dimensional direct numerical simulations with detailed chemistry were performed to investigate the effect of equivalence ratio on spatial variations of the heat release rate and flame markers of hydrogen/carbon monoxide syngas expanding spherical premixed flames under turbulent conditions at elevated pressures. The flame structures and the heat release rate were analysed and compared between fuel-lean, stoichiometric and fuel-rich centrally ignited spherical flames. The equivalence ratio changes the balance among thermo-diffusive effects, Darrieus–Landau instability and turbulence, leading to different flame dynamics and the heat release rate distribution, despite exhibiting similar cellular and wrinkling flames. The Darrieus–Landau instability is relatively insensitive to the equivalence ratio while the thermo-diffusive process is strongly affected by the equivalence ratio. As the thermo-diffusive effect increases as the equivalence ratio decreases, the fuel-lean flame is more unstable than the fuel-rich flame with the stoichiometric flame in between, under the joint effects of the thermo-diffusive instability and the Darrieus–Landau instability. The local heat release rate and curvature display a positive correlation for the lean flame, no correlation for the stoichiometric flame, and negative correlation for the rich flame. Furthermore, for the fuel-lean flame, the low and high heat release rate values are found in the negative and positive curvature zones, respectively, while for the fuel-rich flame, the opposite trends are found. It is found that heat release rate markers based on species concentrations vary strongly with changing equivalence ratio. The results suggest that the HCO, HO2 concentrations and product of OH and CH2O concentrations show good correlation with the local heat release rate for H2/CO premixed syngas-air stoichiometric flame under turbulent conditions at elevated pressures.  相似文献   

2.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

3.
An experimental study on turbulent hydrogen flames from circular and elliptic burners with varying degrees of premixedness (diffusion, fuel-rich, stoichiometric, and fuel-lean) is presented. Flame stability, visible flame height, flame radiation, global nitric oxide (NO) concentration, and inflame temperature and NO concentration profiles were measured. We found that the elliptic burner flames had lower liftoff velocity, were shorter, and radiated less heat to the surrounding as compared to circular burner flames. Global NO concentration decreased with an increase in air equivalence ratio for both circular and elliptic burner flames. Peak in-flame NO concentration along the flame centerline increased with a decrease in air equivalence ratio. Elliptic burner flames produced higher peak in-flame temperatures. Overall, the elliptic burner flames produced less peak NO as compared to circular burner flames at all air equivalence ratios except zero (diffusion flames) in accordance with the global emission measurements.  相似文献   

4.
The flame structures around two equal-sized and interactive fuel droplets immersed in high-temperature convective flows are examined. When the flame is sustained between the two droplets while the flow is pure air, an anchor-shape flame structure, namely the tri-brachial flame, is clearly observed. When far-field temperature or ambient equivalence ratio is increased, the flame propagates upstream and the fuel-lean premixed flame withers. However, if the ambient equivalence ratio is high to some extent such as 0.3, two wings of the flame, viz. the fuel-lean and the fuel-rich premixed flames, extend outward from the stoichiometric point. Once the flame encircles the leading droplet, it evolves into a double-flame structure consisting of a front premixed flame and an aft diffusion flame. Accordingly, the impact of the preceding two environmental factors on the droplets' flame structures is outlined.  相似文献   

5.
In order to evaluate the potential of burning and reforming ammonia as a carbon-free fuel in production of hydrogen, fundamental unstretched laminar burning velocities, and flame response to stretch (represented by the Markstein number) for laminar premixed hydrogen-added ammonia/air flames were studied both experimentally and computationally. Freely (outwardly)-propagating spherical laminar premixed flames at normal temperature and pressure were considered for a wide range of global fuel-equivalence ratios, flame stretch rates (represented by the Karlovitz number) and the extent of hydrogen substitution. Results show the substantial increase of laminar burning velocities with hydrogen substitution, particularly under fuel-rich conditions. Also, predicted flame structures show that the hydrogen substitution enhances nitrogen oxide (NOx) and nitrous oxide (N2O) formation. At fuel-rich conditions, however, the amount of NOx and N2O emissions and the extent of the increase with the hydrogen substitution are much lower than those under fuel-lean conditions. These observations support the potential of hydrogen as an additive for improving the burning performance with low NOx and N2O emissions in fuel-rich ammonia/air flames and hence the potential of using ammonia as a clean fuel. Increasing the amount of added hydrogen tends to enhance flame sensitivity to stretch.  相似文献   

6.
In the present study, we conducted experiments to investigate the effects of external turbulence on the development of spherical H2/CH4/air unstable flames developments at two different equivalence ratios associated with different turbulent intensities using a spherical constant-volume turbulent combustion bomb and high speed schlieren photography technology. Flame front morphology and acceleration process were recorded and different effects of weak external turbulent flow field and intrinsic flame instability on the unstable flame propagation were compared. Results showed the external turbulence has a great influence on the unstable flame propagation under rich fuel conditions. For fuel-lean premixed flames, however, the effects of external turbulence on the morphology of the cellular structure on the flame front was not that obvious. Critical radius decreased firstly and then kept almost unchanged with the augment of the turbulence intensity. This indicated the dominating inhibiting effect of flame stretch on the turbulent premixed flame at the initial stage of the flame front development. Beyond the critical radius, the acceleration exponent was found increasing with the enhancement of initial turbulence intensity for fuel-lean premixed flames. For fuel-rich conditions, however, the initial turbulence intensity had little effect on acceleration exponent. In order to evaluate the important impact of the intrinsic flame instability and external turbulent flow field for spherical propagating premixed flames, intrinsic flame instability scale and average diameter of vortex tube were calculated. Intrinsic flame instability scale decreased greatly and then stayed unchanged with the propagation of the flame front. The comparison between intrinsic flame instability scale and average diameter of vortex tube demonstrated that the external turbulent flow filed will be more important for the evolution of wrinkle structure in the final stage of the flame propagation, when the turbulence intensity was more than 0.404 m/s.  相似文献   

7.
The turbulent flame topology characteristics of the model syngas with two different hydrogen ratios were statistically investigated, namely CO/H2 ratio at 65/35 and 80/20, at equivalence ratio of 0.7. The combustion pressure was kept at 0.5 MPa and 1.0 MPa, to simulate the engine-like condition. The model syngas was diluted with CO2 with a mole fraction of 0.3 which mimics the flue gas recycle in the turbulent combustion. CH4/air flame with equivalence ratio of 1.0 was also tested for comparison. The flame was anchored on a premixed type Bunsen burner, which can generate a controllable turbulent flow. Flame front, which is represented by the sharp increased interface of the OH radical distribution, was measured with OH-PLIF technique. Flame front parameters were obtained through image processing to interpret the flame topology characteristics. Results showed that the turbulent flames possess a wrinkled character with smaller scale concave/convex structure superimposed on a larger scale convex structure under high pressure. The wrinkled structure of syngas flame is much finer and more corrugated than hydrocarbon fuel flames. The main reason is that scale of wrinkled structure is smaller for syngas flame, resulting from the unstable physics. Hydrogen in syngas can increase the intensity of the finer structure. Moreover, the model syngas flames have larger flame surface density than CH4/air flame, and hydrogen ratio in syngas can increase flame surface density. This would be mainly attributed to the fact that the syngas flames have smaller flame intrinsic instability scale li than CH4/air flame. ST/SL of the model syngas tested in this study is higher than CH4/air flames for both pressures, due to the high diffusivity and fast burning property of H2. This is mainly due to smaller LM and li. Vf of the two model syngas is much smaller than CH4/air flames, which suggests that syngas flame would lead to a larger possibility to occur combustion oscillation.  相似文献   

8.
Hydrogen/air swirling premixed flames with different equivalence ratios are studied using direct numerical simulation. A fourth-order explicit Runge–Kutta method for time integration and an eighth-order central differencing scheme for spatial discretization are used to solve the full Navier–Stokes (N–S) equation system. A 9 species 19-step reduced mechanism for hydrogen/air combustion is adopted. The flames are stabilized with the help of a recirculation zone characterizing a high swirling flow. The vortex structures of the swirling premixed flames are presented. The flame structures are investigated in terms of the flame front curvature and tangential strain rate probability density functions (pdfs). The local flamelet temperature profiles are also extracted randomly along the flame front and compared with the corresponding laminar flame temperature profile. In order to study preferential diffusion effects, direct numerical simulation of two additional freely propagating planar flames in isotropic turbulence is conducted. Preferential diffusion effects observed in the planar flames are suppressed in the swirling flames. Further analysis confirms that the coherent small-scale eddies play important roles in the interactions between turbulence and the flame front. They are able to change the dynamic properties of the flame font and lead to enhanced burning intensity in the flame front with negative curvature for both stoichiometric and fuel-lean flames.  相似文献   

9.
Ammonia is a possible candidate for use as a hydrogen energy carrier as well as a carbon-free fuel. In this study, flame stability and emission characteristics of swirl stabilized ammonia/air premixed flames were experimentally investigated. Results showed that ammonia/air premixed flame could be stabilized for various equivalence ratios and inlet flow velocity conditions in a swirl burner without any additives to enhance the reaction of ammonia even though the laminar burning velocity of ammonia is very slow. The lean and rich blowoff limits were found to be close to the flammability limits of the ammonia flame. In addition, emission characteristics were investigated using an FTIR gas analyzer. The NO concentration decreased and ammonia concentration increased under rich conditions. Moreover, it was found that there is an equivalence ratio in rich condition in which NO and ammonia emission are in the same order.  相似文献   

10.
Flame front structure of turbulent premixed CH4/H2/air flames at various hydrogen fractions was investigated with OH-PLIF technique. A nozzle-type burner was used to achieve the stabilized turbulent premixed flames. Hot-wire anemometer measurement and OH-PLIF observation were performed to measure the turbulent flow and detect the instantaneous flame front structure, respectively. The hydrogen fractions of 0%, 5%, 10% and 20% were studied. Results show that the flame front structures of the turbulent premixed flames are wrinkled flame front with small scale convex and concave structures compared to that of the laminar-flame front. The wrinkle intensity of flame front is promoted with the increase of turbulence intensity as well as hydrogen fraction. Hydrogen addition promotes the flame intrinsic instability which leads to the active response of laminar flame to turbulence and results in the much more wrinkled flame front structure. The value of ST/SL increases monotonically with the increase of u′/SL and hydrogen fraction. The increase of ST/SL with the increase of hydrogen fraction is mainly attributed to the diffusive-thermal instability effects represented by the effective Lewis number, Leeff. A general correlation between ST/SL and u′/SL is provided from the experimental data fitting in the form of ST/SL ∝ a(u′/SL)n, and the exponent, n, gives the constant value of 0.35 for all conditions and at various hydrogen fractions.  相似文献   

11.
In order to evaluate the potential of partial ammonia substitution to improve the safety of hydrogen use and the effects on the performance of internal combustion engines, the propagation, development of surface cellular instability and nitrogen oxide (NOx) and nitrous oxide (N2O) emissions of spark-ignited spherical laminar premixed ammonia/hydrogen/air flames were studied experimentally and computationally. With ammonia being the substituent, the fundamental unstretched laminar burning velocities and Markstein numbers, the propensity of cell formation and the associated flame structure were determined. Results show substantial reduction of laminar burning velocities with ammonia substitution in hydrogen/air flames, similar to hydrocarbon (e.g., methane with a similar molecular weight to ammonia) substitution. In all cases, ammonia substitution enhances the NOx and N2O formation. At fuel-rich conditions, however, the amount of NOx emissions increases and then decreases with ammonia substitution and the increased amount of NOx and N2O emissions with ammonia substitution is much lower than that under fuel-lean conditions. These observations support the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use with low NOx and N2O emissions in fuel-rich hydrogen/air flames. The potential of ammonia as a suppressant of both preferential-diffusional and hydrodynamic cellular instabilities in hydrogen/air flames was also found particularly for fuel-lean conditions, different from methane substitution. However, it should be noted that the use of ammonia also imposes considerable technological challenges and public concerns, particularly those associated with toxicity and the specific properties such as high reactivity with container materials and water, which should be completely resolved.  相似文献   

12.
The burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane–air flames were experimentally studied by laser tomography visualization method using a V-shaped flame configuration. Turbulent burning velocity was measured and the variation of flame surface characteristics due to hydrogen addition was analyzed. The results show that hydrogen addition causes an increase in turbulent burning velocity for lean premixed CH4–air mixtures when turbulent level in unburned mixture is not changed. Moreover, the increase of turbulent burning velocity is faster than that of the corresponding laminar burning velocity at constant equivalence ratio, suggesting that the kinetics effect is not the sole factor that results in the increase in turbulent burning velocity when hydrogen is added. The further analysis of flame surface characteristics and brush thickness indicates that hydrogen addition slightly decreases local flame surface density, but increases total flame surface area because of the increased flame brush thickness. The increase in flame brush thickness that results in the increase in total surface area may contribute to the faster increase in turbulent burning velocity, when hydrogen is added. Besides, the stretched local laminar burning velocity may be enhanced with the addition of hydrogen, which may also contribute to the faster increase rate of turbulent burning velocity. Both the variation in flame brush thickness and the enhancement in stretched local laminar burning velocity are due to the decreased fuel Lewis number when hydrogen is added. Therefore, the effects of fuel Lewis number and stretch should be taken into account in correlating burning velocity of turbulent premixed flames.  相似文献   

13.
Unsteady three-dimensional Direct Numerical Simulation (DNS) data obtained from 16 statistically planar and one-dimensional, complex-chemistry, lean (equivalence ratio is equal to 0.50 or 0.35) hydrogen-air flames propagating in forced, intense, small-scale turbulence (Karlovitz number up to 565) are reported. The data are analyzed to compare roles played by leading and trailing edges of a premixed turbulent flame brush in its propagation. The comparison is based on the following considerations: (i) positively (negatively) curved reaction zones predominate at the leading (trailing, respectively) edge of a premixed turbulent flame brush and (ii) preferential diffusion of molecular or atomic hydrogen results in increasing the local fuel consumption and heat release rates in positively or negatively, respectively, curved reaction zones. Therefore, turbulent burning velocities computed by deactivating differential diffusion effects for all species with the exception of either H2 or H are compared for assessing roles played by leading and trailing edges of a premixed turbulent flame brush in its propagation. By analyzing the DNS data, a significant increase in the local fuel consumption and heat release rates due to preferential diffusion of H2 or H is documented close to the leading or trailing, respectively, edges of the studied flame brushes. Nevertheless, turbulent burning velocities computed by activating preferential diffusion solely for H2 are significantly higher than turbulent burning velocities computed by activating preferential diffusion solely for H. This result indicates an important role played by the leading edge in the propagation of the explored turbulent flame brushes.  相似文献   

14.
Numerical study on laminar burning velocity and NO formation of the premixed methane–hydrogen–air flames was conducted at room temperature and atmospheric pressure. The unstretched laminar burning velocity, adiabatic flame temperature, and radical mole fractions of H, OH and NO are obtained at various equivalence ratios and hydrogen fractions. The results show that the unstretched laminar burning velocity is increased with the increase of hydrogen fraction. Methane-dominated combustion is presented when hydrogen fraction is less than 40%, where laminar burning velocity is slightly increased with the increase of hydrogen addition. When hydrogen fraction is larger than 40%, laminar burning velocity is exponentially increased with the increase of hydrogen fraction. A strong correlation exists between burning velocity and maximum radical concentration of H + OH radicals in the reaction zone of premixed flames. High burning velocity corresponds to high radical concentration in the reaction zone. With the increase of hydrogen fraction, the overall activation energy of methane–hydrogen mixture is decreased, and the inner layer temperature and Zeldovich number are also decreased. All these factors contribute to the enhancement of combustion as hydrogen is added. The curve of NO versus equivalence ratio shows two peaks, where they occur at the stoichiometric mixture due to Zeldovich thermal-NO mechanism and at the rich mixture with equivalence ratio of 1.3 due to the Fenimore prompt-NO mechanism. In the stoichiometric flames, hydrogen addition has little influence on NO formation, while in rich flames, NO concentration is significantly decreased. Different NO formation responses to stretched and unstretched flames by hydrogen addition are discussed.  相似文献   

15.
In this study, a specially designed premixed combustion chamber system for ammonia-hydrogen and methane-air laminar premixed flames is introduced and the combustion limits of ammonia-hydrogen and methane-air flames are explored. The measurements obtained the blow-out limits (mixed methane: 400–700 mL/min, mixed hydrogen: 200–700 mL/min), mixing gas lean limit characteristics (mixed methane: 0–82%, mixed hydrogen: 0–37%) and lean/rich combustion characteristics (mixed methane: ? = 0.6–1.9, mixed hydrogen: ? = 0.9–3.2) of the flames. The results show that the ammonia-hydrogen-air flame has a smaller lower blow-out limit, mixing gas ratio, lean combustion limit and higher rich combustion limit, thereby proving the advantages of hydrogen as an effective additive in the combustion performance of ammonia fuel. In addition, the experiments show that increasing the initial temperature of the premixed gas can expand the lean/rich combustion limits of both the ammonia-hydrogen and ammonia-methane flames.  相似文献   

16.
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5.  相似文献   

17.
This paper presents experimental data on the flame structure of laminar premixed ammonia and ammonia/hydrogen flames at different equivalence ratios (φ = 0.8, 1.0 and 1.2) and the laminar flame speed of ammonia/hydrogen flames (φ = 0.7–1.5) at 1 atm. Experimental data were compared with modeling results obtained using four detailed chemical-kinetic mechanisms of ammonia oxidation. In general, all models adequately predict the flame structure. However, for the laminar burning velocity, this is not so. The main nitrogen-containing species present in the post-flame zone in significant concentrations are N2 and NO. Experimental data and numerical simulations show that the transition to slightly rich conditions enables to reduce NO concentration. Numerical simulation indicate that increasing the pressure rise also results into reduction of NO formation. However, when using ammonia as a fuel, additional technologies should be employed to reduce NO formation.  相似文献   

18.
A burner for the investigation of lean stratified premixed flames propagating in intense isotropic turbulence has been developed. Lean pre-mixtures of methane at different equivalence ratios were divided between two concentric co-flows to obtain annular stratification. Turbulence generators were used to control the level of turbulence intensity in the oncoming flow. A third annular weakly swirling airflow provided the flame stabilisation mechanism. A fundamental characteristic was that flame stabilisation did not rely on flow recirculation. The flames were maintained at a position where the local mass flux balanced the burning rate, resulting in a freely propagating turbulent flame front. The absence of physical surfaces in the vicinity of the flame provided free access for laser diagnostics. Stereoscopic Planar Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity vectors on a vertical plane above the burner at the point of flame stabilisation. The instantaneous temperature fields were determined through Laser Induced Rayleigh (LIRay) scattering. Planar Laser Induced Fluorescence (PLIF) of acetone was used to calculate the average equivalence ratio distributions. Instantaneous turbulent burning velocities were extracted from SPIV results, while flame curvature and flame thermal thickness were calculated using the instantaneous temperature fields. The PDFs of these quantities were analysed to consider the separate influence of equivalence ratio stratification and turbulence. Increased levels of turbulence resulted in the expected higher turbulent burning velocities and flame front wrinkling. Flames characterised by higher fuel gradients showed higher turbulent burning velocities. Increased fuel concentration gradients gave rise to increased flame wrinkling, particularly when associated with positive small radius of curvature.  相似文献   

19.
In gas turbines, lean premixed combustion is executed in strongly turbulent flow fields and under high-pressure to allow large thermal loads within small-size combustors. Previous research on turbulent premixed flames has revealed the vital importance of flame-vortex interactions, but most of these investigations have been performed only at atmospheric pressure disregarding the large pressure dependency of the flame front dynamics. We report about spatially high-resolved laser-induced predissociation fluorescence imaging of OH (OH-LIPF) in premixed, high-pressure bluff-body stabilized methane/air flames. For each of the two measurement series with different equivalence ratio (φ = 0.7 and φ = 1.0), the planar flame topology at different pressures (0.1 to 1.1 MPa) but constant exit velocity was detected and stored for analysis. As the pressure was increased, the flame front contour of both equivalence ratios became strongly wrinkled with formation of highly curved flame front elements. For quantification of this phenomenon, the probability density function of flame curvature was evaluated with definition of the mean curvature radius as representative folding scale. To discuss different mechanisms of flame front disturbances according to their relevance, the flame curvature is compared with characteristic turbulence scales of the flow field and with the expected folding scale derived with Sivashinsky‘s formulation of linear flame instability theory. Significant changes become obvious especially if the pressure is increased up to 0.5 MPa. The mean curvature radius decreases distinctly and can be linked to the decreasing size of the Taylor length. Additionally, the formation of highly convoluted flame front elements is enforced by the increasing flame instability behavior. As the results show, the flame stoichiometry has a strong impact on the flame front topology at increasing pressures due to the differences of their flame dynamics.  相似文献   

20.
Lewis number represents the thermo-diffusive effects on laminar flames. That of hydrogen–air mixture varies extensively with the equivalence ratio due to the high molecular diffusivity of hydrogen. In this study, the influences of pressure and thermo-diffusive effects on spherically propagating premixed hydrogen–air turbulent flames were studied using a constant volume fan-stirred combustion vessel. It was noted that the ratio of the turbulent to unstretched laminar burning velocity increased with decreasing equivalence ratio and increasing mixture pressure. Turbulent burning velocity was dominated by three factors: (1) purely hydrodynamic factor, turbulence Reynolds number, (2) relative turbulence intensity to reaction speed, the ratio of turbulence intensity to unstretched laminar burning velocity, and (3) sensitivity of the flame to the stretch due to the thermo-diffusive effects, Lewis and Markstein numbers. A turbulent burning velocity correlation in terms of Reynolds and Lewis numbers is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号