首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
共轨喷油器参数对喷油规律影响的仿真研究   总被引:1,自引:0,他引:1  
针对一台实际的电控共轨中重型车用柴油机,以一成熟的高压共轨系统为模型,利用先进的液力计算软件Hydsim进行模拟计算,分析并预测了共轨系统喷油器主要结构参数,包括喷孔数、喷孔直径、喷油器流量系数、调压弹簧预紧力和刚度、针阀等运动件质量、进油量孔和出油量孔直径、油压活塞上方控制腔容积、喷油背压等对喷油规律的影响,为高压共轨喷油器的设计提供了参考依据。  相似文献   

3.
A parametric study was carried out to investigate the effect of fuel concentration (0.5 M–3.0 M), operating temperature (ambient temperature to 85 °C), flow rate of ethanol (0.5–5.0 mL min−1) and air (100–600 mL min−1) on the direct ethanol fuel cell (DEFC) performance. The operations were conducted in three operational modes, namely, passive, semi passive, and active modes, and power generation were measured. Ethanol crossover was indicated by the carbon dioxide (CO2) concentration present at the cathode outlet and measured by using a CO2 analyzer. Results indicated that DEFC performance increased with the increase of ethanol concentration, and ethanol and oxidant flow rate increased with temperature until DEFC reaches the optimum conditions, i.e., concentration and flow rate. Meanwhile, the DEFC performance significantly and proportionally increased with operation temperature and reached values of up to 8.70 mW cm−2 and 85 °C at stable conditions. Furthermore, fuel crossover, that is, ethanol flux, increased in proportion to the ethanol concentration, i.e., 3.71 × 10−4 g m−2 s−1 and 8.79 × 10−4 g m−2 s−1 for 0.5 M and 3.0 M ethanol concentration, respectively. At different modes of operation, the active DEFC system exhibited the highest performance, followed by the semi passive and passive DEFC system. These results indicated that optimizing ethanol, oxidant flow rate and temperature would enhance the mass transport in anodes and cathodes, and hence improve the electrochemical reactions and DEFC performance.  相似文献   

4.
The Scimitar engine is a new advanced propulsion system designed to propel the aircraft A2 of the LAPCAT project. It is a hybrid system that utilizes the features of turbofan, ramjet and air-turborocket. Hydrogen and air are used as the fuel and oxidant, respectively, while helium is used to transfer heat from the hot incoming air to the hydrogen in the engine. In this study, we present a thermodynamic cycle analysis of the Scimitar engine for the assessment of NOx emissions. The combustion of fuel is studied in detail with an equilibrium model taking into account various dissociation and formation reactions since high levels of temperatures are achieved in its combustion chamber. The NOx emissions of the engine at Mach 5 and the effects of fuel and air flow rates, cruise speed and altitude on these emissions are presented by solving a nonlinear system of equations formed through our novel thermodynamic model. The results show that the NO emissions of the engine can be diminished significantly by decreasing air flow rate, cruise speed and altitude and by increasing the fuel flow rate. The variations of NO2 emissions with these parameters are similar except the variation with altitude which has an inverse effect as compared to the variation of NO.  相似文献   

5.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   

6.
In the current study, optimization of the performance parameters like effective power (EP), effective power density (EPD), effective efficiency (EE), and different heat losses with respect to six engine control parameters, that is, emulsion fuel, compression ratio, equivalence ratio, engine speed, residual gas fraction, and fuel injection pressure with three levels of each, were performed. Taguchi method is used to design the L27 orthogonal array, using Minitab17 software. Optimization of individual performance parameters is performed with the signal to noise ratio curve, and Grey analysis is used to optimize the overall output performance parameters. Furthermore, an analysis of variance method is investigated to calculate the contribution percentage of control parameters. The theoretical analysis revealed that the overall optimum response of output parameters is found with 10% blend of water (A3), 18 compression ratio (B3), 0.8 equivalence ratio (C1), 2100 rpm engine speed (D3), 10% residual gas fraction (E3), and 100 kPa fuel injection pressure (F1). The EP and EPD are improved by 9.6% and 9.19%, respectively. Also, an average GRG for optimum response setting coincides with the average GRG value of the initial setting. The resulted optimization models are anticipated to be positive instruction for diesel engine operating parameters.  相似文献   

7.
An experimental study of a closed-loop impingement spray cooling system to cool a 1 kW 6U electronic test card has been conducted. The system uses R134a as working fluid in a modified refrigeration cycle. The spray from four vapor assisted nozzles is arranged to cover a large ratio of the heated area of the card. Investigations are currently focused on effects of mass flow rate, nozzle inlet pressure and spray chamber pressure. Experimental results are promising with a stable average temperature of around 23 °C being maintained at the heated surface, and maximum temperature variation of about 2 °C under suitable operating conditions. Heat transfer coefficients up to 5596 W/m2 K can be achieved with heat flux input around 50,000 W/m2 in this study. It is found that cooling performance improved with increasing mass flow rate, nozzle inlet pressure and spray chamber pressure, whereas uniformity of the heated surface temperature can only be improved with higher mass flow rate and nozzle inlet pressure. The mechanisms for the enhanced performance are also presented.  相似文献   

8.
Air humidification is a crucial issue for superior performance of proton exchange membrane fuel cell (PEM fuel cell) stacks. In this work, an air humidifier is proposed for a 5 kW PEM fuel cell stack working at elevated temperatures, e.g., 90–95 °C. The high temperature coolant exiting the stack is utilized to pre-heat the air in the heat exchanging tubes of the humidifier, and the heated air is humidified with deionized water supplied by a nozzle fixed in a top cavity. Both the tubes and the nozzle are properly designed to ensure sufficient heat transfer and superior atomization. Humidification performance is evaluated under different operation conditions. The nozzle is able to inject well-atomized water with uniform droplet diameter. With the variation of inlet air flow rate, the relative humidity (RH) of the outlet air increases at the beginning, then decreases gradually due to the attenuation of dew point (DP) temperature. However, the humidification performance can be improved when higher temperature deionized water is injected or high temperature coolant is supplied. At a coolant temperature of 95 °C, the outlet air DP temperature is maintained over 80 °C with 25 °C injection water. Moreover, better humidification performance is achieved when the injection water flow rate is controlled according to the working conditions of the stack.  相似文献   

9.
In this study, the hydrogen fuel effect on the exergetic performance of a turbojet engine used in a military trainer aircraft is investigated. For the first step, the performance assessments of the exergetic performance are conducted according to jet fuel usage and the actual test cell data of the engine. For the second step, an exergetic evaluation is parametrically estimated to use the hydrogen fuel in the engine. Finally, the performance results of the engine run by jet fuel are compared with the performance results of the engine run by hydrogen fuel. Regarding the results of this study, by using hydrogen fuel in the engine, the exergy efficiency of the engine decreases from 15.40% to 14.33%, while the waste exergy rate increases from 6196.51 kW to 6669.4 kW. At the same time, the exergy rate of the fuel rises from 7324.87 kW to 7785.25 kW, hence the specific fuel exergy of the hydrogen fuel is higher than that of the jet fuel. The waste exergy flow cost of the engine rises from 16.52 × 10?3 US$/kW to 17.79 × 10?3 US$/kW. The environmental effect factor of the engine escalates from 5.49 to 5.98 and the ecological effect factor increases from 6.49 to 6.98. On the other hand, the exergetic sustainability index of the engine reduces from 0.182 to 0.167 when the sustainable efficiency factor of the engine goes down from 1.182 to 1.167. Between the components, for both jet fuel and hydrogen fuel, the CC has the highest values of the fuel exergy waste ratio, the relative waste exergy ratio, the product exergy waste ratio, the fuel ratio indicator, the product ratio indicator, the waste exergy cost flow, the environmental effect factor, the ecological effect factor, and the exergetic improvement potential when the CC has the lowest values of the exergy efficiency, exergetic sustainability index, and sustainable efficiency factor, respectively. The reason for this result is that the combustion process contains high irreversibities. The obtained results indicate that the hydrogen fuel usage in the turbojet engine badly affects the exergetic performance of the engine and its components (especially the combustion chamber) hence the specific exergy of the hydrogen fuel is higher than the jet fuel's. On the other hand, the exhaust emissions emitted to the environment decrease from 0.509 kg/s to 0.0045 kg/s with the hydrogen fuel usage.  相似文献   

10.
This study investigates the effect of intake strategies on the combustion and flows characteristics of hydrogen-chlorine synthesis combustors via numerical methods. A crucial issue of hydrogen-chlorine synthesis combustor is to have a sufficiently low flame height and high conversion efficiency. In this study, the combustion performance of combustors equipped with the annular tube, plum nozzle, and porous-bullet nozzle has been thoroughly analyzed. The temperature distribution and gas flow are analyzed using the method of fluid-solid coupling, which indicates that the combustor with porous-bullet nozzle had the best gas distribution, the maximum HCl mole fraction at outlet is 97.24%, and the lowest flame height is 3.4 m, which is 27.15% lower than the combustor with the annular tube. Furthermore, the nozzle structure has a great influence on the fluid velocity in the recirculation zone of the combustor. Finally, the effect of hydrogen/chlorine equivalence ratio (?) and inlet volume flow rate were analyzed, and it can be concluded that with the increase of inlet volume flow, the high-temperature area inside the combustor gradually increases. As the equivalent ratio increases, the combustor outlet's mole fraction changes with a normal distribution trend. It is the most appropriate when the chlorine gas flow rate is 1,100 m3/h and ? = 1.05. The research can be applied to the field of high-purity hydrogen chlorine production, providing researchers with some solutions.  相似文献   

11.
为提升船用低速机涡轮增压器性能,对增压器涡轮排气壳底部流道结构进行参数化,设计并开展了以效率为优化目标的四因素三水平正交试验优化设计和增压器整机性能试验。首先,采用CFD数值模拟方法对不同参数组合的涡轮气动性能进行了计算,然后对涡轮排气壳底部流道结构参数开展了灵敏度分析,同时针对不同参数组结构开展了内部流场对比分析,明确结构因素对流动的影响机理;在此基础上对优化后方案开展了涡轮特性分析,最后在低速双燃料机平台上开展增压器整机试验验证。分析研究表明:在涡轮进气壳、喷嘴环和涡轮叶片等通流部件结构不变的前提下,涡轮排气壳排气方向轴向长度对涡轮整级效率的影响最大,优化后效率明显提升,设计点总压损失系数降低0.3874,静压恢复系数提升0.537,总静效率提升1.85%,其余工况总静效率最大提升2.4%。试验结果表明:优化后涡轮增压器整机效率在主机燃油模式和燃气模式下的全工况范围内效率均有提升,最大提升幅度分别达到1.4%和2.1%,涡轮性能和增压器整机性能改善明显。  相似文献   

12.
D.K. Vyas  R.N. Singh   《Renewable Energy》2007,32(3):512-517
This paper presents the results of investigation carried out in studying the fuel properties of Jatropha seed husk and its gasification feasibility for open core down draft gasifier. Jatropha seed husk was converted to producer gas in an open core down draft gasifier whose performance was evaluated in terms of fuel consumption rate, calorific value of producer gas and gasification efficiency at different gas flow rates. It was found that producer gas calorific value and concentration of CO, along with gasification efficiency, in general, increased with the increase in gas flow rate. The maximum gasification efficiency was found to be 68.31% at a gas flow rate of 5.5 m3 h−1 and specific gasification rate of 270 kg h−1 m−2. Studies revealed that Jatropha seed husk could successfully be used as feedstock for open core down draft gasifier.  相似文献   

13.
Performance of direct-injection off-road diesel engine on rapeseed oil   总被引:2,自引:0,他引:2  
This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine operating on Diesel fuel and cold pressed rapeseed oil. The purpose of this research is to study rapeseed oil flow through the fuelling system, the effect of oil as renewable fuel on a high speed Diesel engine performance efficiency and injector coking under various loading conditions.Test results show that when fuelling a fully loaded engine with rapeseed oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.2 and 12.8% than that for Diesel fuel. However, the brake thermal efficiency of both fuels does not differ greatly and its maximum values remain equal to 0.37–0.38 for Diesel fuel and 0.38–0.39 for rapeseed oil. The smoke opacity at a fully opened throttle for rapeseed oil is lower by about 27–35%, however, at the easy loads its characteristics can be affected by white coloured vapours.Oil heating to the temperature of 60 °C diminishes its viscosity to 19.5 mm2 s−1 ensuring a smooth oil flow through the fuel filter and reducing the brake specific energy consumption at light loads by 11.7–7.4%. Further heating to the temperature of 90 °C offers no advantages in terms of performance. Special tests conducted with modified fuel injection pump revealed that coking of the injector nozzles depends on the engine performance mode. The first and second injector nozzles that operated on pure oil were more coated by carbonaceous deposits than control injector nozzles that operated simultaneously on Diesel fuel.  相似文献   

14.
发动机舱元组件热防护设计与分析是某型组合循环发动机的关键技术之一。首先提出元组件防热布置方案,同时辅以冷却空气主动热防护,根据某型组合发动机空油换热器实际情况,设置不同冷气质量流量,对某型组合发动机舱内喷口油源泵、燃油分布器、增压泵、燃油泵、喷口控制装置、作动筒进行热防护设计。在此基础上,运用商用软件FLUENT,进行了发动机舱及其元组件气动热力性能数值模拟研究。考虑辐射换热,研究冷却空气流量对舱内各元组件表面温度分布的影响。结果表明,辐射换热对发动机舱内各元组件表面温度分布影响很大;冷却空气能有效降低元组件壁面整体温度水平,但对壁面最高温度的降低效果有限,在通入最大冷气流量时,各元组件壁面最高温度降低了2%~8%,但仍远超工作要求;在当前的结构布置下,仅在发动机舱内通入有限流量冷却空气方案并不能够满足元组件的热防护需求,需要对发动机舱采取进一步的热防护措施。  相似文献   

15.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

16.
Increasing the fuel mixing performance in the combustor of scramjet substantially improves the overall efficiency of the scramjet engine. In this article, computational fluid dynamic is used to study the impacts of hydrogen jets injection through the backward-facing multi-steps on the fuel distribution and mixing zone at the supersonic air stream of Mach = 4. This study also analyzes the jet flow feature and circulation of jets in different sections of the combustor at downstream of the multi-injectors. Reynolds average Navier-Stocks equations are solved with SST turbulence model for achieving a precise and acceptable solution. The effects of step height on the jet features are also examined. According to circulation evaluation, low jet total pressure (pressure ratio = 0.1) and high step depth (step depth = 1 mm) is the optimum condition for achieving high circulation value. Our investigations show that the mixing efficiency of the hydrogen multijets improves up to 15% when the step height increases from 0.5 mm to 1 mm.  相似文献   

17.
Feasibility study of cashew nut shells as an open core gasifier feedstock   总被引:1,自引:0,他引:1  
This paper present the results of investigation carried out in studying the fuel properties of cashew nut shell and its gasification feasibility for open core down draft gasifier. Cashew nut shell was converted to producer gas in an open core down draft gasifier whose performance was evaluated in terms of fuel consumption rate, calorific value of producer gas and gasification efficiency at different gas flow rates. It was found that producer gas calorific value and volumetric percentage of its combustible constituents, along with gasification efficiency, in general, increased with the increase in gas flow rate. The maximum gasification efficiency was found to be 70% at a gas flow rate of 130 m3 h−1 and specific gasification rate of 167 kg h−1m−2. Studies revealed that cashew nut shells could successfully be used as feedstock for open core down draft gasifier.  相似文献   

18.
In this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in‐house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm?2 min?1) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm?2, 0.75 M, and 20 mL cm?2 min?1, respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.  相似文献   

19.
Centrifugal compressors are one of the most important auxiliary components in polymer electrolyte membrane fuel cell vehicles, which tend to operate at a narrow area with low specific speed. Here, the optimal design goals of centrifugal compressors are investigated on the basis of a lumped model for fuel cell systems. A three-dimensional multi-objective and multi-point aerodynamic optimization and data mining method for centrifugal compressors named ODM is presented via integrating a multi-island genetic algorithm, Reynolds-Average Navier-Stokes solver technique and self-organization map based data mining technique. Data mining indicates that compressor geometry would move to a small inlet diameter ratio and a narrow region of the outlet width ratio. Based on the optimization results, a centrifugal compressor for 100 kW fuel cell stack is manufactured. The experimental results show that the improvement of isentropic efficiency near low mass flow has been achieved, which indicates that the proposed ODM is effective in the performance improvement of centrifugal compressors for fuel cell vehicles.  相似文献   

20.
The gas flow field design has a significant influence on the overall performance of a proton exchange membrane fuel cell (PEMFC). A single-channel PEMFC with wedge-shaped fins in the cathode channel was proposed, and the effects of fin parameters such as volume (0.5 mm3, 1.0 mm3, and 1.5 mm3), number (3, 5, and 9), and porosity of the gas diffusion layer (GDL) (0.2, 0.4, 0.6, and 0.8) on the performance of PEMFC were numerically examined based on the growth rate of power density (GRPD) and polarization curve. It was shown that wedge-shaped fins could effectively improve the PEMFC performance. With an increase in fin volume, the distributions of oxygen mass fraction in the outlet area of the cathode channel were lower, the drainage effect of the PEMFC improved, and GRPD also increased accordingly. Similar results were obtained as the number of fins increased. The GDL porosity had a greater effect than the wedge-shaped fins on the improvement in PEMFC performance, but the influence of GDL porosity weakened and the GRPD of porosity decreased as the porosity increased. This study provides an effective guideline for the optimization of the cathode channel in a PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号