首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steam reforming of pyrolysis bio-oil is one proposed route to low carbon hydrogen production, which may be enhanced by combination with advanced steam reforming techniques. The advanced reforming of bio-oil is investigated via a thermodynamic analysis based on the minimisation of Gibbs Energy. Conventional steam reforming (C-SR) is assessed alongside sorption-enhanced steam reforming (SE-SR), chemical looping steam reforming (CLSR) and sorption-enhanced chemical looping steam reforming (SE-CLSR). The selected CO2 sorbent is CaO(s) and oxygen transfer material (OTM) is Ni/NiO. PEFB bio-oil is modelled as a surrogate mixture and two common model compounds, acetic acid and furfural, are also considered. A process comparison highlights the advantages of sorption-enhancement and chemical looping, including improved purity and yield, and reductions in carbon deposition and process net energy balance.The operating regime of SE-CLSR is evaluated in order to assess the impact of S/C ratio, NiO/C ratio, CaO/C ratio and temperature. Autothermal operation can be achieved for S/C ratios between 1 and 3. In autothermal operation at 30 bar, S/C ratio of 2 gives a yield of 11.8 wt%, and hydrogen purity of 96.9 mol%. Alternatively, if autothermal operation is not a priority, the yield can be improved by reducing the quantity of OTM. The thermodynamic analysis highlights the role of advanced reforming techniques in enhancing the potential of bio-oil as a source of hydrogen.  相似文献   

2.
A pathway for hydrogen production from supercritical water reforming of glycerol integrated with in situ CO2 removal was proposed and analyzed. The thermodynamic analysis carried out by the minimizing Gibbs free energy method of three glycerol reforming processes for hydrogen production was investigated in terms of equilibrium compositions and energy consumption using AspenPlus™ simulator. The effect of operating condition, i.e., temperature, pressure, steam to glycerol (S/G) ratio, calcium oxide to glycerol (CaO/G) ratio, air to glycerol (A/G) ratio, and nickel oxide to glycerol (NiO/G) ratio on the hydrogen production was investigated. The optimum operating conditions under maximum H2 production were predicted at 450 °C (only steam reforming), 400 °C (for autothermal reforming and chemical looping reforming), 240 atm, S/G ratio of 40, CaO/G ratio of 2.5, A/G ratio of 1 (for autothermal reforming), and NiO/G ratio of 1 (for chemical looping reforming). Compared to three reforming processes, the steam reforming obtained the highest hydrogen purity and yield. Moreover, it was found that only autothermal reforming and chemical looping reforming were possible to operate under the thermal self-sufficient condition, which the hydrogen purity of chemical looping reforming (92.14%) was higher than that of autothermal reforming (52.98%). Under both the maximum H2 production and thermal self-sufficient conditions, the amount of CO was found below 50 ppm for all reforming processes.  相似文献   

3.
Hydrogen production via steam reforming of bio-oil combining heat recovery of blast furnace slag was investigated via thermodynamic analysis in this paper. The addition of blast furnace slag just had a slight enhancement for hydrogen production from the steam reforming process of bio-oil at low temperature, and had almost no thermodynamic effect (either promotion or restraint) for the steam reforming reaction equilibrium at high temperature where higher H2 yield were obtained, no matter how much blast furnace slag was added. However, different masses of blast furnace slag as heat carrier supply different amounts of heat, so the optimal blast furnace slag addition was performed via energy balance. If the sensible heats of the reformed gas and the slag after steam reforming reactions were unrecycled, the required mass of blast furnace slag was over 30 times of bio-oil mass, while the required slag mass was just 11.5 times of bio-oil mass if the sensible heats after the steam reforming reactions were recycled. For the latter, about 0.144 Nm3 H2 per kg blast furnace slag was obtained at the reforming temperature of 700–750 °C and the steam/carbon mole ratio of 6.  相似文献   

4.
The operation types and operation window for high-purity H2 production for the sorption enhanced steam methane reforming (SE-SMR) with Ni/Al2O3 catalyst and CaO sorbent in a fixed-bed reactor are investigated by an experimentally verified 2D numerical method. Four chemical reactions including steam reforming, water gas shift, global steam reforming, and CO2 sorption are considered. The operation window is defined as the H2 and CO molar fractions at outlet satisfying both yH2,out ≥ 90% and yCO,out ≤ yCO,allow (= 1%, 2% or 3%) in dry base. Under the conditions of yH2,out and yCO,allow, there are six operation types, of which 2 types are within the operation window and 4 types are not within the operation window as the temperature, weight hourly space velocity (WHSV) and steam to methane (S/C) molar ratio vary. For a common case of S/C = 3, the operation windows for yCO,allow = 3% at WHSV = 8.5 h?1 and 42.5 h?1 are located at 570–670 °C and 640–690 °C respectively, based on the parameters in this work. The operation window of temperature is wider with decreasing WHSV, and it becomes wider remarkably as the S/C ratio increases. The lowest temperature inside the operation window is 550 °C. The effects of the temperature, WHSV and S/C ratio on the operating types, yH2,out and yCO,out are also presented and discussed in details.  相似文献   

5.
H2 yield and purity from sorption enhanced steam reforming (SE-SR) are determined by temperature, S:C ratio in use, and feed gas composition in hydrocarbons, N2 and CO2. Gases with high hydrocarbons composition had the highest H2 yield and purity. The magnitude of sorption enhancement effects compared to conventional steam reforming (C-SR), i.e. increases in H2 yield and purity, and drop in CH4 yield were remarkably insensitive to alkane (C1C3) and CO2 content (0.1–10 vol%), with only N2 content (0.4–70 vol%) having a minor effect. Although the presence of inert (N2) decreases the partial pressure of the reactants which is beneficial in steam reforming, high inert contents increase the energetic cost of operating the reforming plants. The aim of the study is to investigate and demonstrate the effect of actual shale gas composition in the SE-SR process, with varied hydrocarbon fractions, CO2 and N2 in the feedstock.  相似文献   

6.
A straightforward thermodynamic analysis of bio-oil steam reforming was carried out in the context of hydrogen and syngas production, employing Gibbs energy minimization method to determine equilibrium composition and global reaction heat. The bio-oil model compound was a mixture of acetic acid, phenol, and acetone. The effects of process variables, such as temperature and inlet S/C molar ratio, were investigated over a wide range of conditions. Thermodynamic analysis was performed using the software Aspen Plus v.11. It was identified the best operational conditions that could maximize syngas and further hydrogen production considering energy efficiency. The optimum production of hydrogen is 2.28 mol per carbon mole at S/C = 10 and 850 K, and syngas is 2.37 mol per carbon mole at S/C = 10 and 900 K. It has been demonstrated that the equilibrium calculations can be used to simulate these steam reforming reactions, given the catalyst's behavior.  相似文献   

7.
Hydrogen production was studied in the catalytic steam reforming of a synthetic and a real aqueous fraction of bio-oil. Ni/Al coprecipitated catalysts with varying nickel content (23, 28 and 33 relative atomic %) were prepared by an increasing pH technique and tested during 2 h under different experimental conditions in a small bench scale fixed bed setup. The 28% Ni catalyst yielded a more stable performance over time (steam-to-carbon molar ratio, S/C = 5.58) at 650 °C and a catalyst weight/organic flow rate (W/morg) ratio of 1.7 g catalyst min/g organic. Using the synthetic aqueous fraction as feed, almost complete overall carbon conversion to gas and hydrogen yields close to equilibrium could be obtained with the 28% Ni catalyst throughout. Up to 63% of overall carbon conversion to gas and an overall hydrogen yield of 0.09 g/g organic could be achieved when using the real aqueous fraction of bio-oil, but the catalyst performance showed a decay with time after 20 min of reaction due to severe coke deposition. Increasing the W/morg ratio up to 5 g catalyst min/g organic yielded a more stable catalyst performance throughout, but overall carbon conversion to gas did not surpass 83% and the overall hydrogen yield was only ca. 77% of the thermodynamic equilibrium. Increasing reaction temperatures (600–800 °C) up to 750 °C enhanced the overall carbon conversion to gas and the overall yield to hydrogen. However, at 800 °C the catalyst performance was slightly worse, as a result of an increase in thermal cracking reactions leading to an increased formation of carbon deposits.  相似文献   

8.
A novel process for hydrogen production via bio-oil catalytic reforming without steam addition was proposed. The liquid feedstock was a distillation fraction from crude bio-oil molecular distillation. The fraction obtained was enriched with the low-molecular-weight organics (acids, aldehydes, and ketones), and contained nearly all of the water from crude bio-oil. The highest catalytic performance, with a carbon conversion of 95% and a H2 yield of 135 mg g−1 organics, was obtained by processing the distillate over Ni/Al2O3 catalyst at 700 °C. The steam involved in the reforming reaction was derived entirely from the water in the crude bio-oil. The fresh and spent catalysts were characterized by N2-physisorption, thermogravimetric analysis, and high-resolution transmission electron microscopy. To further understand the reaction mechanisms, symmetric density functional theory calculations for decomposition were performed on four model compounds in bio-oil (acetic acid, hydroxyacetone, furfural, and phenol) over the Ni(111) surface. In addition, the decomposition of H2O∗ to OH∗ and O∗ and their subsequent steam reforming reactions with carbon precursors (CH∗ and CH3C∗) were also examined.  相似文献   

9.
The catalytic steam reforming of shale gas was examined over NiO on Al2O3 and NiO on CaO/Al2O3 in the double role of catalysts and oxygen carrier (OC) when operating in chemical looping in a packed bed reactor at 1 bar pressure and S:C 3. The effects of gas hourly space velocity GHSV (h?1), reforming temperatures (600–750 °C) and catalyst type on conventional steam reforming (C-SR) was first evaluated. The feasibility of chemical looping steam reforming (CL-SR) of shale gas at 750 °C with NiO on CaO/Al2O3 was then assessed and demonstrated a significant deterioration after about 9 successive reduction-oxidation cycles. But, fuel conversion was high over 80% approximately prior to deterioration of the catalyst/OC, that can be strongly attributed to the high operating temperature in favour of the steam reforming process.  相似文献   

10.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

11.
A two-step process for production of hydrogen from vacuum residue has been developed. In the first step, which has already been communicated [18], the residue is reacted with ozone to get oxidized and cracked products. Next, the catalytic oxidative steam reforming of the product obtained after ozonation over a Pt catalyst supported on La2O3-CeO2-γ-Al2O3 was carried out. Effects of the operating conditions: the temperature, the steam to carbon ratio and the oxygen to carbon ratio on oxidative steam reforming were investigated. The oxidative steam reforming was efficient at the molar ratio of O2/C = 0.5, S/C = 4 at 1173 K. Pt catalyst deactivated with time due to coke formation. The catalyst could be regeneration by blowing oxygen through the catalytic bed. Catalysts were characterized by XRD, N2 adsorption–desorption and thermo gravimetrically to understand the microstructures.  相似文献   

12.
The thermodynamic equilibrium of steam reforming of propionic acid (HPAc) as a bio-oil model compound was studied over a wide range of reaction conditions (T = 500–900 °C, P = 1–10 bar and H2O/HPAc = 0–4 mol/mol) using non-stoichiometric equilibrium models. The effect of operating conditions on equilibrium conversion, product composition and coke formation was studied. The equilibrium calculations indicate nearly complete conversion of propionic acid under these conditions. Additionally, carbon and methane formation are unfavorable at high temperatures and high steam to carbon (S/C) ratios. The hydrogen yield versus S/C ratio passes a maximum, the value and position of which depends on temperature. The thermodynamic equilibrium results for HPAc fit favorably with experimental data for real bio-oil steam reforming under same reaction conditions.  相似文献   

13.
This paper investigates the hydrogen-rich gas produced from biomass employing an updraft gasifier with a continuous biomass feeder. A porous ceramic reformer was combined with the gasifier for producer gas reforming. The effects of gasifier temperature, equivalence ratio (ER), steam to biomass ratio (S/B), and porous ceramic reforming on the gas characteristic parameters (composition, density, yield, low heating value, and residence time, etc.) were investigated. The results show that hydrogen-rich syngas with a high calorific value was produced, in the range of 8.10–13.40 MJ/Nm3, and the hydrogen yield was in the range of 45.05–135.40 g H2/kg biomass. A higher temperature favors the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 °C, the hydrogen yield increased from 74.84 to 135.4 g H2/kg biomass. The low heating values first increased and then decreased with the increased ER from 0 to 0.3. A steam/biomass ratio of 2.05 was found as the optimum in the all steam gasification runs. The effect of porous ceramic reforming showed the water-soluble tar produced in the porous ceramic reforming, the conversion ratio of total organic carbon (TOC) contents is between 22.61% and 50.23%, and the hydrogen concentration obviously higher than that without porous ceramic reforming.  相似文献   

14.
Existing literature data have been used to model the steam reforming of ethanol on catalytic honeycombs coated with Rh-Pd/CeO2, which have shown an excellent performance and robustness for the production of hydrogen under realistic conditions. In this article, a fully 3D non-isothermal model is presented, where the reactions of ethanol decomposition, water gas shift, and methane steam reforming have been modelled under different operational pressures (1–10 bar) and temperatures (500–1200 K) at a steam to carbon ratio of S/C = 3 and a space time of W/F between 2·10−3 and 3 kg h Lliq−1. According to the modelling results, a maximum hydrogen yield of 80% is achieved at a working temperature of 1150 K and a pressure of 4 bar at S/C = 3.  相似文献   

15.
Steel slag, a waste from steelmaking plant, has been proven to be good candidate resources for low-cost calcium-based CO2 sorbent derivation. In this work, a cheap and sintering-resistance CaO-based sorbent (CaO (SS)) was prepared from low cost waste steel slag and was applied to enhance catalytic steam reforming of coke oven gas for production of high-purity hydrogen. This steel slag-derived CaO possessed a high and stable CO2 capture capacity of about 0.48 g CO2/g sorbent after 35 adsorption/desorption cycles, which was mainly ascribed to the mesoporous structure and the presence of MgO and Fe2O3. Product gas containing 95.8 vol% H2 and 1.4 vol% CO, with a CH4 conversion of 91.3% was achieved at 600 °C by steam reforming of COG enhanced by CaO (SS). Although high temperature was beneficial for methane conversion, CH4 conversion was remarkably increased at lower operation temperatures with the promotion effects from CaO (SS), and CO selectivity has been also greatly decreased. Reducing WHSV could increase methane conversion and reduce CO selectivity due to longer reactants residence time. Reducing C/A could increase methane conversion and hydrogen recovery factor, and also decrease CO selectivity. When being mixed with catalyst during SE-SRCOG, CaO (SS) with a uniform size distribution favored methane conversion due to the high utilization efficiency of catalyst. Promising stability of CaO (SS) in cyclic reforming/calcination tests was evidenced with a hydrogen recovery factor >2.1 and CH4 conversion of 82.5% at 600 °C after 10 cycles using CaO (SS) as sorbent.  相似文献   

16.
K modified Ni-based catalysts are used to investigate the effect of in-situ and ex-situ injection of steam (ISI and ESI) on biomass pyrolysis and in-line catalytic steam reforming in a two-stage fixed bed reactor. The results show that 0.5 wt% K is appropriate to modify the Ni-based catalysts for steam reforming of biomass pyrolysis vapor. Compared to the catalytic cracking without steam addition, both ISI and ESI increase the gas yield and the carbon conversion efficiency (Xc) of the pyrolysis vapors. And the ESI is more beneficial to the conversion of pyrolysis vapors to small molecular gases. The maximum hydrogen concentration, hydrogen yield and carbon conversion efficiency (Xc) of staged-gasification can reach 53.8%, 31 mmol/g-bio, and 94.6%, respectively, when both stages are at 700 °C with ex-situ steam injection (S/C = 1.2) and 3 g catalyst loaded in the second stage. Also, the steam is beneficial to removing the depositions of graphitized coke and small molecular polycyclic aromatic hydrocarbon on the catalysts. However, it is yet difficult for steam to react with the highly ordered carbonaceous.  相似文献   

17.
Previous studies showed that calcium oxide (CaO), when added to a biomass steam gasifier, could play the role of both CO2 sorbent and tar reforming catalyst, and thereby produce more hydrogen. However, most of these works focused on the former role with little attention to tar reforming aspect of CaO. Therefore, this work aims primarily at studying the tar reforming effect of in-bed CaO. To this end, an in-depth analysis of the effect of CaO on tar yield and composition is presented. The present work also studies the role of CaO as a CO2 sorbent to enhance hydrogen production from steam gasification of biomass in a bubbling fluidized bed. The influence of different operating parameters, temperature (T) and steam to biomass (S/B) ratio, as well as the effect of using in-bed CaO on gas and tar production is investigated. Results show that the maximum H2 and minimum CO2 concentration of 63.07% and 18.68%, respectively are obtained at T = 650 °C and S/B = 3.41. The maximum H2 yield of 256.81 ml g−1-biomass was obtained at T = 700 °C and S/B = 3.41, at which the minimum tar content of 6.45 g N m−3 was also received. Compared to a bed of sand alone, a 20% higher H2 concentration, an almost double H2 yield and a 67% reduction in tar content were obtained when a bed of CaO was used. Moreover, shifting the tar species from higher to fewer ring structures as a result of in-bed CaO can reduce tar dew point by 11 °C and tar carcinogenic potential by almost 60%.  相似文献   

18.
The production of high purity hydrogen via the sorption-enhanced steam reforming of acetic acid, a model compound of bio-oil, was investigated in this work. A bi-functional catalyst with stable catalytic activity and CO2-capture ability, Ni/CexZr1−xO2-CaO, was prepared by a sol–gel method and characterized in details by BET, XRD, TPR and SEM-EDX analytic techniques. The characterization of these materials showed that the catalysts were mainly composed of Ni, CexZr1−xO2 and CaO. As CaO loading increased, a new species, CaZrO3, with a perovskite structure was formed. The presence of CaZrO3 in the catalysts acted as a barrier to CaO grain growth at high temperatures and thus improved the CO2-capture stability. These catalysts exhibited good CO2 sorption capacity in 15 consecutive carbonation–calcination cycles, even at a high calcination temperature of 900 °C. Particularly, in case of the Ni/CZC-2.5 catalyst, 98% high purity H2 could be obtained during the prebreakthrough stage when the catalysts were tested in the SESR of acetic acid at 550 °C with an S/C ratio of 4. In addition, high hydrogen purity was maintained over 15 cyclic reaction-calcination operations, which was mainly attributed to the uniform distribution of Ni, CaO, CexZr1−xO2 and CaZrO3 in the catalysts. These results indicated the great potential of the SESR technique for hydrogen production from bio-oil.  相似文献   

19.
Transition metal catalysts widely used in refineries are provided as oxides and require pre-reduction to become activated. The auto-reduction of a NiO/Al2O3 catalyst with acetic acid (HAc) followed by HAc steam reforming was investigated in a packed bed reactor. Effects of temperature and molar steam to carbon ratio (S/C) on reduction kinetics and catalyst performance were analysed. Results showed that a steady steam reforming regime along with complete NiO reduction could be obtained after a coexistence stage of reduction and reforming. A 2D nucleation and nuclei growth model fitted the NiO auto-reduction. The maximum reduction rate constant was attained at S/C = 2. Steam reforming activity of the auto-reduced catalyst was just below that of the H2-reduced catalyst, probably attributed to denser carbon filament formation and larger loss of active Ni. Despite this, a H2 yield of 76.4% of the equilibrium value and HAc conversion of 88.97% were achieved at 750 °C and S/C = 3.  相似文献   

20.
We demonstrated an auto-thermal reforming process for producing hydrogen from biomass pyrolysis liquids. Using a noble metal catalyst (0.5% Pt/Al2O3 from BASF) at a methane-equivalent space velocity of around 2000 h−1, a reformer temperature of 800 °C–850 °C, a steam-to-carbon ratio of 2.8–4.0, and an oxygen-to-carbon ratio of 0.9–1.1, we produced 9–11 g of hydrogen per 100 g of fast pyrolysis bio-oil, which corresponds to 70%–83% of the stoichiometric potential. The elemental composition of bio-oil and the bio-oil carbon-to-gas conversion, which ranged from 70% to 89%, had the most significant impact on the yield of hydrogen. Because of incomplete volatility the remaining 11%–30% of bio-oil carbon formed deposits in the evaporator. Assuming the same process efficiency as that in the laboratory unit, the cost of hydrogen production in a 1500 kg/day plant was estimated at $4.26/kg with the feedstock, fast pyrolysis bio-oil, contributing 56.3% of the production cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号