首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developments of promising photocatalyst for PEC water oxidation gain significant interest in the research field of PEC water splitting. The BiVO4 has been envisioned as suitable photocatalyst material for the PEC water oxidation due to suitable bandgap with favorable band edge positions. Nevertheless, the poor electron-hole separation and low charge transfer efficiency of BiVO4 yield sluggish surface catalysis reaction. Herein, facile electrodeposition and annealing techniques are proposed to fabricate W-doped BiVO4 photoanode coupled with FeOOH (W–BiVO4/FeOOH) for efficient photocatalytic water oxidation. This synthesis is simple, cost-effective and less time consuming. The doping concentration of W and deposition time of FeOOH are optimized to improve photocatalytic ability of BiVO4. At 1.23 V vs. reversible hydrogen electrode (RHE) under 1 sun illumination, the W–BiVO4/FeOOH photoanode exhibits a high photocurrent density of 2.2 mA/cm2, which is seven folds higher than that of the pristine BiVO4 photoanode (0.31 mA/cm2 1.23 V vs. RHE). The enhanced photocatalytic ability of W–BiVO4/FeOOH photoanode is due to the enhanced charge transport properties and synergistic effects of W doping and FeOOH deposition. The excellent long-term stability with the photocurrent density retention of 90% after continuous light illumination for 1000 s is also achieved for the W–BiVO4/FeOOH photoanode.  相似文献   

2.
BiVO4 is an ideal photoanode material for solar-driven photoelectrochemical (PEC) water splitting but it easily suffers from the recombination of photogenerated electrons and holes due to its low carrier mobility thus cause low efficiency of PEC water splitting. Herein, the BiVO4/CdS/NiCo-LDH photoanode was prepared by combining methods of metal organic decomposition, chemical and electrodeposition. The photoanode photocurrent density reaches 2.72 mA cm−2 at 1.23 V (vs. RHE), which is 3.6 folds of pure BiVO4 photoanode and onset potential shifts 450 mV toward cathodic. The incident photon-to-electron conversion efficiency (IPCE) value is 2.86 folds of BiVO4, the calculated photon–to–current efficiency (ABPE) is 1.24% at 0.62 V (vs. RHE). The obtained results are higher than that of most BiVO4 based photoanodes published so far. The enhancement benefits from increase of visible light absorption capacity, enhancement of separation efficiency of photoexcited electron-hole and fast transfer of holes accumulated on electrode/electrolyte surface for water oxidation, which has been confirmed by calculating carrier density and carrier transport rate.  相似文献   

3.
Monoclinic phase of BiVO4 is a promising photoanode material for photoelectrochemical (PEC) water splitting, but its sluggish water oxidation kinetics and frequent bulk charge recombination greatly reduce its efficiency of PEC water splitting. A novel BiVO4/NiO/rGO photoanode was very simply prepared by electrodeposition, solution immersion and spin coating methods, in particular, the solution immersion method to loading NiO has never been reported in PEC research. Compared with BiVO4, the photocurrent density of the ternary photoanode reaches 1.52 mA/cm2 at 1.23 V vs RHE, which is 2.41 and 1.39 times higher than that of pure BiVO4 and binary BiVO4/NiO photoanode, respectively. The onset potential of the ternary photoanode shows a significant cathodic shift of 130 mV compared with the BiVO4 photoanode. Moreover, the measured incident photon-to-current efficiency (IPCE) value reaches 50.52% at λ = 420 nm. The improvement is attributed to the type-II heterojunction formation that enhances the separation efficiency of electron/hole and the rGO decoration that accelerates the electron transfer and provides more active sites for gas adsorption.  相似文献   

4.
Monoclinic bismuth vanadate has been widely used as a promising n-type semiconductor for photoelectrochemical (PEC) water decomposition due to its high reserves, good stability in neutral solutions, and relatively narrow band gap. Here, we developed a simple method to prepare a thin NiOOH layer on the surface of BiVO4 nanorod arrays. The heterostructured photoanode shows great enhancement for the photocurrent density of 2.7 mA cm−2 at 1.23 V vs. RHE, which is ~2.3 times higher than that of pristine BiVO4 electrode, due to NiOOH as an efficient oxygen-releasing catalyst with abundant oxygen vacancies. The NiOOH/BiVO4 photoanodes are systematically studied with X-ray diffraction, Raman, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, and UV–vis diffuse-reflectance spectrum. The heterostructured photoanode shows excellent PEC activity, which can provide a promising and easy strategy to prepare such photoanode with high-efficient oxygen evolution co-catalysts.  相似文献   

5.
BiVO4 is a promising photoanode material for water splitting due to its substantial absorption of solar light as well as favorable band edge positions. However, the poor water oxidation kinetics of BiVO4 results in its insufficient photocurrent density. Herein, we demonstrate the use of CoP nanoparticles for facile surface modification of nanoporous BiVO4 photoanode in potassium borate buffer solution (pH 9.0), which can generate a tremendous cathodic shift of ~430 mV in the onset potential for photoelectrochemical water oxidation. In addition, a remarkable photocurrent density of 4.1 mA cm?2 is achieved at 1.23 V vs. RHE under AM 1.5G illumination. The photoelectrochemical measurement using sodium sulfite as a hole scavenger clearly shows that the greatly improved performances are attributed to the efficient suppression of interfacial charge recombination through loading of CoP catalyst. Moreover, the maximum surface charge injection yield can reach >81% at 1.23 V vs. RHE and the maximum IPCE of CoP/BiVO4 can reach 75.8% at 420 nm, suggesting the potential application of CoP-modified BiVO4 photoanode for overall solar water splitting in cost-effective tandem photoelectrochemical cells.  相似文献   

6.
An integrated solar water splitting tandem cell without external bias was designed using a FeOOH modified TiO2/BiVO4 photoanode as a photoanode and p-Cu2O as a photocathode in this study. An apparent photocurrent (0.37 mA/cm2 at operating voltage of +0.36 VRHE) for the tandem cell without applied bias was measured, which is corresponding to a photoconversion efficiency of 0.46%. Besides, the photocurrent of FeOOH modified TiO2/BiVO4–Cu2O is much higher than the operating point given by pure BiVO4 and Cu2O photocathode (∼0.07 mA/cm2 at +0.42 VRHE). Then we established a FeOOH modified TiO2/BiVO4–Cu2O two-electrode system and measured the current density-voltage curves under AM 1.5G illumination. The unassisted photocurrent density is 0.12 mA/cm−2 and the corresponding amounts of hydrogen and oxygen evolved by the tandem PEC cell without bias are 2.36 μmol/cm2 and 1.09 μmol/cm2 after testing for 2.5 h. The photoelectrochemical (PEC) properties of the FeOOH modified TiO2/BiVO4 photoanode were further studied to demonstrate the electrons transport process of solar water splitting. This aspect provides a fundamental challenge to establish an unbiased and stabilized photoelectrochemical (PEC) solar water splitting tandem cell with higher solar-to-hydrogen efficiency.  相似文献   

7.
Photoelectrochemical (PEC) water splitting is a promising way to convert solar energy into hydrogen energy. It is typically carried out at room temperature (RT) and 1 sun illumination. The PEC water splitting under concentrated light is expected to be an effective route to improve PEC performance, but there are few studies on it. Herein, CoPi/Mo:BiVO4 photoanode was selected to investigate the effect of concentrated light and the reaction temperature on its PEC performance. It was revealed that CoPi/Mo:BiVO4 showed enhanced PEC performance under concentrated light. The photocurrent density was enhanced with increased light intensity and increased reaction temperature. At a high temperature (60 °C), the normalized photocurrent density (3.31 mA cm−2 at 1.23 V vs. RHE) was found to be optimal at 4 suns, which was attributed to the synergistic effect of concentrating light and heating. It is proved that concentrated light can effectively improve the PEC performance, which has important guiding significance to realize the low-cost and efficient PEC water splitting.  相似文献   

8.
Improving the absorption of visible light, accelerating the separation of carries and reducing the recombination of electron-hole pairs are critical to enhance photoelectrochemical (PEC) performance of ZnFe2O4. Herein, the ZnFe2O4/Ag/Ag2S films are firstly prepared with a photocurrent density of 0.91 mA/cm2 at 1.23 V vs. RHE, which is 9.10 times higher than that of pristine ZnFe2O4 (0.10 mA/cm2 at 1.23 V vs. RHE). On the basis, Co-Pi cocatalyst is deposited on ZnFe2O4/Ag/Ag2S to further optimize PEC performance of ZnFe2O4, the photocurrent density of ZnFe2O4/Ag/Ag2S/Co-Pi is 1.18 mA/cm2 at 1.23 V vs. RHE. The improved PEC performance of ZnFe2O4/Ag/Ag2S/Co-Pi films could be attributed to: (i) fast transmission of electron-hole pairs owing to 1D ZnFe2O4 NRs; (ii) surface plasmon resonance (SPR) effect of Ag nanoparticles; (ⅲ) visible light absorption is improved by sensitization of Ag2S nanoparticles; (ⅳ) Co-Pi cocatalyst decreases the recombination of electron-hole pairs by capturing holes. This work provides new insights for metal plasmas, sensitizers and cocatalysts synergistically modify photoanodes for efficient PEC water splitting.  相似文献   

9.
Hematite is a prospective semiconductor in photoelectrochemical (PEC) water oxidation field due to its suitable bandgap for the solar spectrum absorption. Nevertheless, the low transfer and separation efficiency of the charge carriers are restricted by its diffusion length of hole which is 2–4 nm and further reduce the PEC performance. Here, we report an innovative method, by introducing nanocavities into the α-Fe2O3 nanorod arrays photoanodes through helium ions implantation, to improve the charge carriers' transfer and separation efficiency and further to enhance water oxidation performance. The result indicates that, the photocurrent density of nanocavities embedded α-Fe2O3 photoanode (S2-A sample) reaches 1.270 mA/cm2 at 1.6 V vs. RHE which is 1-fold higher than that of the pristine α-Fe2O3 (0.688 mA/cm2) and the photocurrent density of S2-A sample reaches 0.652 mA/cm2 at 1.23 V vs. RHE. In this work, the ion implantation combined with post annealing method is found to be a valid method to improve the photoelectrochemical performance, and it also can be further used to modify the other semiconductor photoelectrodes materials.  相似文献   

10.
Developing novel photoanodes with high efficiency for photoelectrochemical (PEC) water splitting has become the key to solar energy conversion and storage realm. Herein, 3D worm-like bismuth vanadate (BiVO4) is grafted on 2D thin tungsten trioxide (WO3) underlayer by electrodeposition to form mixed–dimensional structured photoanode, resulting in significant improvement of the photocatalytic performance and the charge separation efficiency. Characterization results prove that the mixed–dimensional structured can boost the photocatalytic activity by suppressing back reaction and charge recombination of the bulk BiVO4. Simultaneously, the electrical conductivity of photoanode can be increased by W6+ doping. Furthermore, a robust catalyst NiCo2Ox is coated onto the surface of WO3/BiVO4 photoanode, exhibiting a desirable photocurrent of 3.85 mA cm?2 at 1.23 V vs. RHE and an excellent stability over 3 h. Both the excellent photocurrent density and great operational stability of this 2D/3D WO3/BiVO4 photoanode make it a promising material for practical applications.  相似文献   

11.
Bismuth vanadate (BiVO4) is being widely identified as a leading n-type semiconductor material for photoelectrochemical (PEC) water splitting. Nevertheless, achieving efficient PEC water oxidation process through BiVO4 photoanode still faces serious challenge such as severe electron-hole recombination. In this case, PEC activity of BiVO4 photoanode was enhanced by decoration of three-dimensional CoMn-layered double hydroxide (CoMn-LDH) nanoflakes on the BiVO4 surface via a facile electrodeposition process. It was suggested that CoMn-LDH played a synergistic effect on broadening internal light absorption, which accelerated injection of holes carrier to electrolyte and alleviated the electron-hole recombination, resulting in expediting faster PEC water oxidation reaction kinetics. Consequently, the photocurrent density of BiVO4/CoMn-LDH photoanode achieved 2.69 mA cm−2 at 1.23 VRHE, 2.45 times higher than the pristine BiVO4. What's more, 220 mV negative-shift took place on onset potential that was further decreased to 0.31 VRHE. The vastly enhanced PEC performance was also prioritized to those of Co and Mn single relatives. This work demonstrated that the synergistic BiVO4/CoMn-LDH as a capable candidate material, can be utilized for effective PEC water splitting.  相似文献   

12.
Using vanadium oxide (V2O5) inverse opal (IO) as a three-dimensional (3D) electron transporting tunnel, bismuth vanadate (BiVO4) as a light harvester, and Amorphous Nickel Hydroxide (NiOOH) as an oxygen evolution co-catalyst, a V2O5@BiVO4@NiOOH IO architecture was fabricated as an efficient photoanode on a conductive fluorine doped tin oxide (FTO) substrate for photoelectrochemical (PEC) water oxidation. V2O5 is the visible light absorbing photoanodes for water oxidation; however, the efficiency of this compound remains low (∼0.08 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (VRHE)) and the unfavorable surface trap states limits the activity of V2O5 photoelectrodes in a PEC system. We found that the photoactive thin conductive BiVO4 (∼12 nm) in the V2O5 IO greatly enhanced the charge separation efficiency to achieve better PEC water oxidation through modification of the surface states. The subsequent addition of NiOOH as an effective Oxygen evolution catalyst subsequently reduces the large overpotential and generates the photocurrent density of 1.14 mA/cm2 at 1.23 VRHE. Electrochemical impedance spectroscopy (EIS) evidenced that NiOOH deposition can substantially lower the charge transfer resistance (Rct) at the semiconductor interface. Specifically, the consecutive and ordered morphology renders direct conduction pathways for the extraction of photogenerated electron/hole pairs and the convenient structure to penetrate the photogenerated carriers toward the semiconductor surface over the electrolyte. It is expected that the uninterrupted pathways will improve the electron transportation and thus the charge collection properties.  相似文献   

13.
The catalytic reactivity and photoactivity of WO3 and BiVO4 oxide semiconductors have general obstacles as electrodes in emergent photo-electrochemical (PEC) hydrogen evolution applications. The present work comprises the integration of photocatalyst with wide visible photon absorption material which is vital for hydrogen evolution in photo-electrocatalytic water splitting. Herein, the 1D WO3 NWs have been integrated with stable water oxidation photocatalysts of BiVO4 and Bi2S3 as a photoanode (Bi2S3/BiVO4/WO3) for photoelectrochemical hydrogen evolution reactions. The morphological variations in the Bi2S3/BiVO4/WO3 heterostructure manifest catalytic activity and rapid charge transfer characteristics owing to band alignment and a wide range of visible photon absorption. The optimized Bi2S3/BiVO4/WO3 multidimensional photoanode accomplishes a superior photocurrent density of 1.52 mA/cm2, a seven-fold higher than pristine WO3 photoanode counterpart (0.2 mA/cm2) at 1 V vs. RHE. A prodigious lowest onset potential of ?0.01 V vs. RHE) has been achieved which enables very high solar to hydrogen conversion. The photoelectrode with entangled morphology such as nanosheets, nanocrystals and nanorods expanded their surface to volume ratio having enhanced catalytic performance. The hybrid photoanodes have demonstrated the lowest charge transfer resistance of 360 Ohm/cm2 with a 7-fold rise in hydrogen evolution performance. The resultant triadic Bi2S3/BiVO4/WO3 heterostructure appeared to be an emerging stable photo-electro catalyst for hydrogen evolution applications.  相似文献   

14.
In this work, the synthesis of cheap BiVO4 photoanodes for the photoelectrochemical water splitting reaction was optimized via the scalable thin film electrodeposition method. Factors affecting the photoelectrochemical activity, such as the electrodeposition time, the ratio of the Bi-KI to benzoquinone-EtOH in the deposition bath, and the calcination temperature, have been investigated by using the Central Composite Design of Experiments. Pristine monoclinic scheelite BiVO4 photoanodes having a photocurrent density of 0.45 ± 0.05 mA/cm2 at 1.23 V vs RHE have been obtained. It was shown that a high photocurrent density is generally dictated by the following physico-chemical properties: a higher crystallite size, optimal thickness and a porous morphology, which give rise to a low charge transfer resistance, low onset potential and a high donor density. Moreover, to the best of our knowledge, this is the first report on the depth profile XPS analysis performed in BiVO4 photoanodes made by electrodeposition technique, from which it was concluded that the surface V species exist as V4+ while the bulk V species are V5+. The V4+ induces a higher amount of surface oxygen vacancies, which was found to be beneficial for the photoactivity.  相似文献   

15.
Low photocurrent density of hematite (α-Fe2O3) originating from the inherent defects usually hinders its application in photoelectrochemical (PEC) water oxidation. In this paper, the synergetic effect of increase of oxygen vacancies and in-situ constructing heterojunction by coating MOFs on the α-Fe2O3 nanoarrays gives rise to the boosted photocurrent of α-Fe2O3 from 0.25 mA/cm2 to 2.1 mA/cm2 at 1.23 V (vs. RHE). The results showed that the appropriate energy band structure engineered by the presence of MOFs layer not only facilitated the PEC water oxidation, but also enhanced the light absorption performance. With inducing oxygen vacancies in further, the intrinsic conductivity of photoanode can be well ameliorated. The value of carrier density is improved one order higher to promote charge transfer between the interfaces and raise the carrier separation efficiency as a result.  相似文献   

16.
Here, we report the synergistic effect of dual TiO2 layers to enhance the PEC performance of Zirconium-doped zinc ferrite (ZZFO) photoanode by improving the charge carrier density and suppressing the photogenerated charge recombination. The TiO2 underlayer works as a blocking layer to remarkably suppress the back-injection of electrons from the fluorine-doped tin oxide (FTO) leading to reducing the bulk charge recombination. While interlayer TiO2 improves the bulk charge transfer property of ZZFO photoanodes. The optimal TiO2 double-layer modified ZZFO photoanode exhibits an enhanced photocurrent of 0.435 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE), which is 2.5 times higher than that of the ZZFO photoanode. The effect of each layer was deeply investigated by electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and time-resolved photoluminescence studies (TRPL) with the aim of gaining a clear picture of the interface modifications and their impact on the efficiency of the ZZFO photoanode.  相似文献   

17.
Surface decoration of photoanodes with oxygen evolution cocatalysts is an efficient approach to improve the photoelectrochemical water splitting performance. Herein, ultrafine CoOx was selectively immobilized on the surface of BiVO4/WO3 photoanode by using the photogenerated holes to in-situ oxidize Co4O4 cubane. The composited photoanode (CoOx/BiVO4/WO3) displayed an enhanced photoelectrochemical (PEC) water oxidation performance, with a photocurrent density of 2.3 mA/cm2 at 1.23 VRHE under the simulated sunlight irradiation, which was 2 times higher than that of bare BiVO4/WO3. The characterization results for the morphological, optical and electrochemical properties of the photoelectrodes revealed that, the enhanced PEC performances could be attributed to the improved charge carrier separation/transport behaviors and the promoted water oxidation kinetics when the photoelectrodes were loaded with CoOx.  相似文献   

18.
In order to enhance the photoelectrochemical (PEC) performance of tungsten oxide (WO3), it is critical to overcome the problems of narrow visible light absorption range and low carrier separation efficiency. In this work, we firstly prepared the 2D plate-like WO3/CuWO4 uniform core-shell heterojunction through in-situ synthesis method. After modification with the amorphous Co-Pi co-catalyst, the ternary uniform core-shell structure photoanode achieved a photocurrent of 1.4 mA/cm2 at 1.23 V vs. RHE, which was about 6.67 and 1.75 times higher than that of pristine WO3 and 2D uniform core-shell heterojunction, respectively. Furthermore, the onset potential of 2D WO3/CuWO4/Co-Pi core-shell heterojunction occurred a negatively shifts of about 20 mV. Experiments illuminated that the enhanced PEC performance of WO3/CuWO4/Co-Pi photoanode was attributed to the broader light absorption, reduced carrier transfer barrier and increased carrier separation efficiency. The work provides a strategy of maximizing the advantages of core-shell heterojunction and co-catalyst to achieve effective PEC performance.  相似文献   

19.
We produced hierarchically branched Fe2O3 nanorods on a Sb:SnO2 transparent conducting oxide (TCO) nanobelt structure as photoanodes for photoelectrochemical water splitting. Single-crystalline SnO2 nanobelts (NBs) surrounded by Fe2O3 nanorods (NRs) were synthesized by thermal evaporation, then underwent chemical bath deposition and annealing. When Fe2O3 was crystallized by annealing, Sn was diffused from SnO2 NBs and incorporated to Fe2O3 NRs, which was confirmed through Energy dispersive spectroscopy. Unlike previous high temperature sintering (∼800 °C), Sn doped hematite NRs were obtained at a low temperature (∼650 °C). This occurred since SnO2 NBs directly connected to Fe2O3 NRs are an abundant source of Sn dopant. The 3D hematite NRs on SnO2 NBs annealed at 650 °C produce a photocurrent density of 0.88 mA/cm2 at 1.23 V vs. RHE, which is 3 times higher than that of hematite NRs on a fluorine doped tin oxide (FTO) glass substrate annealed at the same temperature. The enhanced photocurrent is attributed to the improved electrical conductivity of Fe2O3 NRs by Sn doping, the efficient electron transport pathway by TCO nanowire and the increased surface area by hierarchically branched structure.  相似文献   

20.
Herein, for the first time, an efficient photoanode engineered with the cascade structure of FTO|c-TiO2|few graphene layers|TiO2/GQDs|Ni(OH)2 assembly (Ni(OH)2 photoanode) is designed. This photoanode exhibited much lower electron–hole recombination, fast charge transport, higher visible light harvesting, and excellent performance with respect to FTO|c-TiO2|TiO2 assembly (TiO2 photoanode) in the photoelectrocatalytic oxygen evolution process. The photocurrent density of Ni(OH)2 photoanode is 7 times (0.35 mA cm−2 at 1.23 V vs. RHE) greater than that of TiO2 photoanode (0.045 mA cm−2 at 1.23 V vs. RHE). The compact TiO2 (c-TiO2) layer in Ni(OH)2 photoanode plays a role of an effective hole-blocking layer. Few-layer graphene layer could speed up the transport of the photogenerated electrons from the conduction band of the TiO2/GQDs to FTO. Ni(OH)2 layer could transfer rapidly holes into electrolyte solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号