首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-B catalysts were prepared by the chemical reduction of CoCl2 with NaBH4 for hydrogen generation from borohydride hydrolysis. The catalytic properties of the Co-B catalysts were found to be sensitive to the preparation conditions including pH of the NaBH4 solution and mixing manner of the precursors. A Co-B catalyst with a very high catalytic activity was obtained through the formation of a colloidal Co(OH)2 intermediate. The ultra-fine particle size of 10 nm accounted for its super activity for hydrogen generation with a maximum rate of 26 L min−1 g−1 at 30 °C. The catalyst also changed the hydrolysis kinetics from zero-order to first-order.  相似文献   

2.
Carbon nanofibers (CNFs) incorporating NiS nanoparticles (NPs), namely NiS@CNFs were prepared by one-step electrospinning and successfully employed as a catalyst for hydrogen production from hydrolytic dehydrogenation of sodium borohydride (SBH). As-prepared NiS@CNFs, composed of polyacrylonitrile (PAN), nickel acetate, and ammonium sulfide, was calcined at 900 °C in argon atmosphere, and characterized using standard surface science techniques. The combined results revealed the growth of NiS NPs inside the CNFs, hence confirmed the presence of elemental Ni, S, and C. The as-prepared NiS@CNFs catalyst has a significantly higher surface area (650.92 m2/g) than the reported value of 376 m2/g. Importantly, this catalyst exhibited a much higher catalytic performance, for H2 production from SBH, than that of Ni@CNFs, as evidenced by its low activation energy (∼25.11576 kJ/mol) and their Rmax values of 2962 vs. 1770 mL/g·min. Recyclability tests on using NiS@CNFs catalyst showed quantitatively production (∼100% conversion) of H2 from SBH and retained up to 70% of its initial catalytic activity after five successive cycles. The low cost and high catalytic performance of the designed NiS@CNFs catalyst enable facile H2 production from readily available hydrogen storage materials.  相似文献   

3.
Co-based catalysts of the reaction by which hydrogen was obtained from NaBH4 solution were prepared by chemical reduction in a liquid phase. X-ray diffraction and scanning electron microscopy analyses showed that the as-prepared Fe@Co catalyst was ultrafine and amorphous. The calculated Arrhenius activation energy of the Fe@Co catalyst was 35.62(1) kJ mol−1 while that of the Co catalyst was 38.81(2) kJ mol−1, demonstrating that Fe@Co nanoparticles reduce the activation energy of the reaction more than does a Co nanocatalyst. X-ray absorption spectroscopy (XAS) clearly reveals the valences of Fe and Co. The Fe valence of Fe@Co is smallest among three catalysts because of the Co shell. The molar ration of Fe to Co is 1: 2 as determined by using XPS analysis, indicating that the novel catalyst reduces costs. The generation of hydrogen is schematically elucidated.  相似文献   

4.
Micro algae based on Spirulina platensis is successfully used for the synthesis of S and N-doped metal-free carbon materials. The procedure consists of three stages; (i) Activated carbon production by KOH activation in CO2 atmosphere (S-AC), (ii) S atom doping to the obtained S-AC using sulphuric acid by hydrothermal activation (S-AC-S), (iii) N atom doping by hydrothermal activation to S-AC obtained using nitric acid (S-AC-S-N). The S and N doped metal-free catalysts are used for H2 release in NaBH4 methanolysis reaction (NaBH4-MR) for the first time. The metal-free carbon catalysts are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM-EDS), X-ray diffractometer spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption and elemental analysis (CHNS) methods. When the HGR values obtained for S-AC-S-N (26,000 mL min?1 g?1) and S-AC (2641 mL min?1 g?1) are compared, there is a 9.84-fold increase. Activation energy (Ea) value for S-AC-S-N was 10.59 kJ mol?1.  相似文献   

5.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   

6.
7.
Herein, the surface properties of graphitic carbon nitride (GCN) with sulphur(S), boron (B) and oxygen (O) dopants were improved. The heteroatom-doped metal-free GCN exhibited both rich surface functional groups and a carbon defect structure. These metal-free catalysts were used to obtain hydrogen (H2) from the sodium borohydride (SB) methanolysis for the first time. Compared to GCN, S, B, and O doped GCN catalyst obtained showed a 2.2-fold improvement in H2 production. HGR value obtained with B, O and S doped GCN (10 mg) via SB of 2.5% was 9166 ml min −1g−1. XPS, SEM-EDX, TEM, FTIR, and XRD analyses were used for the structural properties of catalysts. The activation energy (Ea) for B, O and S doped GCN was 28.89 kJ mol−1.  相似文献   

8.
At present, a novel and active catalyst, RuW/MWCNT catalyst, was successfully synthesized to complete the hydrolysis reaction of sodium borohydride (NaBH4). The activity of Ru catalyst was increased by adding tungsten (W) to ruthenium (Ru) on multi-walled carbon nanotube (MWCNT) support. Surface characterization of the catalyst was performed with scanning electron microscope (SEM-EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmissing electron microscope (TEM) analysis methods. SEM-EDX revealed that RuW (95:5) catalyst metal ratio was obtained at desired nominal ratio. XRD characterization revealed that W addittion to the Ru structure increased its activity by forming an alloy. W addition Ru altered the electronic structure of the Ru. Parameters affecting the hydrolysis performance of RuW/MWCNT catalyst such as temperature, amount of catalyst, NaBH4 concentration and sodium hydroxide (NaOH) concentration were investigated. Adding NaOH to the reaction vessel reduced the activity of the RuW/MWCNT catalyst. From the hydrolysis measurements, the activation energy of RuW(95–5)/MWCNT catalyst was found to be 16.327 kjmol?1, the reaction order as 0.61 and the initial rate as 95,841,4 mL H2gcatmin?1. The stability of the RuW/MWCNT catalyst was tested using 5 times and it was observed that this novel RuW/MWCNT catalyst could complete the hydrolysis reaction despite repeated use.  相似文献   

9.
In this study, Ni deposited carbon fiber electrode (Ni/CF) prepared by electroless deposition method was examined for their redox process and electrocatalytic activities during the oxidation of hydrogen peroxide and sodium borohydride in alkaline solutions. The Ni/CF catalyst was characterized by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and electrochemical voltammetry analysis. The electrocatalytic activity of the Ni/CF for oxidation of hydrogen peroxide and sodium borohydride in alkaline solutions was investigated by cyclic voltammetry. The anodic peak current density is found to be three times higher on Ni/CF catalyst for sodium borohydride compared to that for hydrogen peroxide. Preliminary tests on a single cell of a direct borohydride/peroxide fuel cell (DBPFC) and direct peroxide/peroxide fuel cell (DPPFC) indicate that DBPFC with the power density of 5.9 mW cm−2 provides higher performance than DPPFC (3.8 mWcm−2).  相似文献   

10.
In the study, metal-free boron and oxygen incorporated graphitic carbon nitride (B and O doped g-C3N4) with carbon vacancy was successfully prepared and applied as a catalyst to the dehydrogenation of sodium borohydride (NaBH4) in methanol for the first time. The hydrogen generation rate (HGR) value was found to be 11,600 mL min?1g?1 by NaBH4 of 2.5%. This is 2.53 times higher than the g-C3N4 catalyst without the addition of B and O. The obtained activation energy was 25.46 kJ mol?1. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), energy dispersive X-Ray analyser (EDX), Transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) analyses for characterization were performed. A possible mechanism of H2 production from the reaction using metal-free B and O doped g-C3N4 catalyst with carbon vacancy has been proposed. This study showed that g-C3N4 and its composites with doping atoms can be used effectively in H2 production by NaBH4 methanolysis.  相似文献   

11.
12.
Extended application of hydrogen as energy carrier demands an economical, safe and reliable technology for storage. In particular, chemical hydrides appear as capable and promising to overcome the issues related to hydrogen safety and handling and to be considered competitive with respect to conventional fuels.  相似文献   

13.
14.
This work studied the self-hydrolysis kinetics of aqueous sodium borohydride (NaBH4) for hydrogen generation and storage purposes. Two semi-global rate expressions of sodium borohydride and hydrogen ion consumption were derived from an extensive series of batch process experiments where the following parameters were systematically varied: solution temperature (298 K–348 K), NaBH4 concentration (0.5 wt% to 25.0 wt%), and sodium hydroxide (NaOH) concentration (0.0 wt% to 4.0 wt%). Transient hydrogen generation rates and transient solution pH were measured during the hydrolysis experiments. Given initial conditions (temperature, NaBH4 concentration, and H+ concentration), the two coupled semi-global rate equations can be integrated to obtain the transient time history of H2 generation (or NaBH4 consumption) and solution pH (or H+ concentration). Comparing analytical results of transient hydrogen generation rate and transient solution pH with experimental data, good agreement was reached for many conditions, especially for elevated solution pH values, levels at which NaBH4 solutions are used practically.  相似文献   

15.
We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH4 ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].  相似文献   

16.
Here, for the first time, a metal-free catalyst was synthesized by ethylenediamine tetra-acetic acid (EDTA) modification of the carbon nitride (g-C3N4) sample and protonation of the obtained sample. The catalyst was used for the production of H2 from the methanolysis of sodium borohydride (NaBH4). The EDTA modification and protonation of the g-C3N4 sample was confirmed by XRD, FTIR, SEM-EDX, and TEM analyses. During the hydrogen generation, NaBH4 concentration effect, catalyst amount effect, temperature effect and catalyst reusability were investigated. The HGR value obtained with 2.5% NaBH4 using 10 mg catalyst was 7571 mL min?1g?1. The activation energy (Ea) for the g–C3N4–EDTA-H catalyst was found to be 32.2 kJ mol?1 The reusability of the g–C3N4–EDTA-H catalyst shows a catalytic performance of 72% even after its fifth use.  相似文献   

17.
Chemical hydrides, such as sodium borohydride (NaBH4), offer promising gravimetric and volumetric hydrogen storage densities. The overall system energy density depends on the reactor performance. In this study, a novel intergrated reactor design in which catalyst bed is integrated with a heat exchanger for autothermal operation showed significant improvements in reactor performance. Over 200% enhancement in reactor throughput was achieved with the integrated reactor at 99% fuel conversion with constant reaction temperature profiles over a wide range of fuel flow rates. Impacts of improved performance on system operation and overall energy density of chemical hydride based hydrogen storage system were also discussed.  相似文献   

18.
Hydrogen is a promising energy carrier for realizing the transition from fossil fuels to renewable energy sources. Nowadays, the development of the hydrogen economy faces many challenges connected with its efficient production, storage, distribution, and end-use. During the past decade, the alcoholysis, particularly methanolysis, of sodium borohydride (NaBH4) has attracted much attention due to the nonflammability, nontoxicity, potential for utilization in cold conditions of the reaction system. Highly efficient catalysts are of great significance to guarantee the efficiency of the reaction and control the hydrogen release. In this review, we summarize recent advances in both metallic and nonmetallic catalysts for the alcoholysis of NaBH4. This review also summarizes the advantages and disadvantages of various catalysts in the investigations to assess the potential opportunities and challenges for their application in NaBH4 methanolysis. The catalytic mechanisms related to NaBH4 methanolysis were also discussed.  相似文献   

19.
Sodium borohydride (NaBH4) is a safe and practical hydrogen storage material for on-board hydrogen production. However, a significant obstacle in its practical use on-board hydrogen production system is its high cost. Hence, the reproduction of NaBH4 from byproducts that precipitate after hydrolysis is an important strategy to make its use more cost effective. In this work, we focused on the optimization of thermochemical NaBH4 reproduction reaction in a large-scaled reactor (∼100 ml), and we investigated the effects of the reaction temperature (400–600 °C) and H2 pressure (30–60 bar) on the NaBH4 conversion yield using Mg as a reducing agent. The conversion yield of NaBO2 to NaBH4 increased with an increase in H2 pressure to 55 bar and then decreased slightly at 60 bar. The yield increased with an increase in the reactor temperature from 400 to 600 °C. The maximum yield was 69% at 55 bar and 600 °C using homogenized reactants by ball-milling for 1 h under an Ar atmosphere. Though Ca as a reducing agent makes the thermochemical reproduction reaction more favorable, the NaBH4 yield was low after 1 h of production at 55 bar and 600 °C. This result may be due to the fact that Ca is not as effective as Mg in catalyzing the conversion of hydrogen gas to protide (H), which can substitute oxygen actively in NaBO2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号