首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aiming at easily recoverable and regenerated catalyst development for efficient hydrogen production from alkyl-substituted amine boranes, boron (B)-doped cobalt (Co) nanoparticles with similar composition and particle size were anchored on two different activated carbon supports: granule and pellet. The effect of different independent variables such as type active carbon support (granule or pellet), alkyl-substituted amine boranes (ammonia borane-AB, methyl amine borane-MEAB and ethylenediamine borane-EDAB), recyclability cycle on hydrogen generation rate as dependent variable were investigated via Analysis of Variance (ANOVA). In addition, compared with ammonia borane, alkyl-substituted ones showed slower hydrogen generation properties in presence catalysts: AB > MEAB > EDAB. Among B-doped Co catalysts supported with different activated carbon supports, granule type activated carbon supported one showed best catalytic performance of derivatives of borane compounds dehydrogenation, and the hydrogen generation rate (2.49–0.44 L H2 min?1 g?1Co) and TOF values (7338.52–1451.96 molH2 mol?1catmin?1). In the bargain, granule catalysts performed good recyclability activity, maintains its high hydrogen yields and its activity only decreased % 71 even after 5 repetitive cycles.  相似文献   

2.
Nickel based materials are the most potential catalysts for COx-free hydrogen production from ammonia decomposition. However, the facile synthesis of supported Ni-based catalysts with small size Ni particles, high porosity and good structural stability is still of great demand. In this work, uniform small-sized Ni particles supported into porous alumina matrix (Ni@Al2O3) are synthesized by a simple one-pot method and used for ammonia decomposition. The Ni content is controlled from 5 at.% to 25 at.%. Especailly, the 25Ni@Al2O3 catalyst shows the best catalytic performance. With a GHSV of 24,000 cm3gcat?1h?1, 93.9% NH3 conversion is achieved at 600 °C and nearly full conversion of NH3 is realized at 650 °C. The hydrogen formation rate of 25NiAl catalyst reaches 3.6 mmol gcat?1min?1 at 400 °C and 7.8 mmol gcat?1min?1 at 450 °C. The enhanced activity observed on 25Ni@Al2O3 catalyst can be attributed to the structural characteristic that large amounts of uniform-sized small (7.2 ± 0.9 nm) Ni particles are highly dispersed into porous alumina matrix. The aggregation of active metallic Ni particles during the high temperature reaction can be effectively prevented by the porous alumina matrix due to the strong interaction between them, thus ensuring a good catalytic performance.  相似文献   

3.
The study of ruthenium catalysts for ammonia decomposition on carbonized and non-carbonized Al2O3 nanofibers (ANF) showed that the activity of catalysts with carbonized supports (ANFC) was 2–3 times higher compared to non-carbonized ones. Thus, on Ru/ANFC and Ru/ANF the release of hydrogen reached 133.5 and 34.7 mmol H2/(min·gcat), respectively, whereas on Ru-BaAc/ANFC and Ru-BaAc/ANF, only 118.8 and 58.6 mmol H2/(min·gcat), respectively. On the average, the activation energy of ammonia decomposition on ANFC-supported catalysts is 15 kJ/mol lower than that value for ANF-supported catalysts. According to TEM data, Ru particles on ANFC are larger than on ANF, but are more evenly distributed. An increase in the activity of the catalyst correlates with a change in the electronic state of the active component. XPS data for Ru indicate a shift in the binding energy towards lower values when going from ANF to ANFC.  相似文献   

4.
Catalytic ammonia decomposition is an attractive method to generate hydrogen at mid-temperatures (<700 °C) but must incorporate precious metals (Pd, Ru, etc.) to ensure high reactivity. Developing Ni-based catalysts to decompose ammonia can enhance its prospect for hydrogen generation. However, the catalytic activity of Ni is hardly satisfactory at mid-temperatures. In this work, we show the bimetallic NixCo10-x/CeO2 towards mid-temperature NH3 decomposition, with the metal loading of Ni and Co tuned. Kinetics study demonstrates that the NH3 decomposition reaction follows the Temkin Pyzhev mechanism and the synergy between Ni and Co can decrease the reaction orders regarding NH3 and increase the reaction orders regarding H2. Mechanistic results indicate that the recombinative N desorption limits the reaction rate. The synergy between Ni and Co can simultaneously decrease the energy barriers of the recombinative N desorption and mitigate the H2 poisoning effect. Therefore, Ni7.5Co2.5/CeO2 displays both high ammonia conversion (96.96%) and hydrogen formation rate (1947.9 mmol/(gcat.h)) at 650 °C. We hope the mechanism in this work can be used to guide the design of inexpensive catalysts to decompose ammonia at mid-temperatures.  相似文献   

5.
Boron compounds have recently attracted attention in hydrogen production since they contain many hydrogen atoms. Among these compounds, ammonia borane, which has high hydrogen density (in weight basis), can be used to produce hydrogen through a hydrolysis reaction. However, since the ammonia borane solution is highly resistant to hydrolysis under ambient conditions, there is a need for active and stable catalysts to accelerate the reaction. In this review paper, unsupported and carbon-based supported metal catalysts used for hydrogen production through the hydrolysis of ammonia borane are presented. Noble metal catalysts (Ru, Rh, Pd, Pt and their binary and ternary alloys) and non-noble metal catalysts (Co, Ni, Fe, Cu and their binary and ternary alloys) were examined. The activation energy of reaction and turnover frequency (TOF) values were compared for these catalysts. Among the unsupported catalysts, it was concluded that the multi-metal catalyst systems (binary, ternary and quaternary) have higher catalytic activity than a single use of the same metals. In addition, the comparison showed that the supported catalysts are more resistant to catalytic cycles and suitable for long-term use. It was observed that CNT supported Rh (TOF = 706 mol H2 mol cat−1 min−1) and graphene supported Ru (TOF = 600 mol H2 mol cat−1 min−1) catalysts are the most active catalysts for the hydrogen generation from the ammonia borane at room temperature.  相似文献   

6.
In this paper, we designed a composite photocatalytic system in which cobalt nanoparticles (Co NPs) are attached to nitrogen-doped carbon (N-d-C) and co-bonded to the surface of the noted photocatalyst graphite carbon nitride (g-C3N4), showing an excellent photocatalytic hydrogen production. The bulk g-C3N4 was formed in the first thermal treatment in air using melamine as a precursor. Subsequently, the secondary calcination under N2 led to the synchronous fabrication of N-d-C/Co NPs and their combination with g-C3N4 to form a novel ternary photocatalyst (g-C3N4/N-d-C/Co NPs). Co NPs exposed on the surface of the nanomaterials endowed much more reaction sites than g-C3N4 for photocatalytic hydrogen production. Meanwhile, the embedded N-d-C provided an additional transfer approach for photocarriers. The as-prepared composite nanomaterials own a relatively high specific surface area of 97.45 m2 g?1 with an average pore size of 3.83 nm. As a result, compared with pristine g-C3N4 (~25.35 μmol g?1 h?1), the photocatalytic performance was increased by over 10 times (~270.05 μmol g?1 h?1). Our work gives a novel approach for highly active g–C3N4–based photocatalysts in the field of photocatalysis.  相似文献   

7.
NH3 decomposition over non-noble catalyst to generate COx-free H2 has attracted great attention in recent years. In this work, fumed SiO2-supported Ni, Co and Ni–Co bimetallic catalysts are synthesized by using a co-impregnation method and evaluated for NH3 decomposition, which shows that the bimetallic catalysts exhibit better catalytic activity than the monometallic ones. This enhanced activity observed on bimetallic catalyst can be largely attributed to the more appropriate catalyst metal-N binding energy resulting from the synergistic effect between Ni and Co in the formed Ni–Co alloy. Among the synthesized catalysts, Ni5Co5/SiO2 synthesized with the Ni/Co molar ratio of 5:5 achieves 76.8% NH3 conversion under a GHSV of 30,000 mL h−1 g−1cat at 550 °C and shows the best catalytic activity, which can be further improved by doping with K (78.1% NH3 conversion at 30,000 mL h−1 g−1cat), and the obtained Ni5Co5/SiO2–K also shows excellent catalytic stability.  相似文献   

8.
Fe-BTC (iron 1,3,5-benzenetricarboxylic acid), a commercially available metal organic framework (MOF), was used as a sacrificial template to produce a series of carbon-embedded Fe catalysts upon its pyrolysis at different temperatures. The catalyst prepared by pyrolyzing Fe-BTC at 400 °C under flowing N2 provided a high graphitic degree on the carbon support hosting highly dispersed Fe species at a Fe loading of 34 wt%. Performance measurements on ammonia decomposition to produce COx-free hydrogen showed that this catalyst provided an ammonia conversion of 73.8% at a space velocity of 6000 cm3 NH3 h−1 gcat−1 and at 500 °C for at least 120 h. This stable performance, exceeding that of some of the best non-noble metal catalysts, was associated with the presence of highly-dispersed Fe species at a significantly high Fe loading, embedded in a carbonaceous shell. The presence of the carbonaceous shell not only protected the active species against sintering, but also made them electron rich owing to its high level of graphitization.  相似文献   

9.
This paper presents hydrogen generation measurements from the hydrolysis of NaBH4 aqueous solutions catalyzed by Co doping on single, bimetallic and trimetallic oxide supports (Co/CuO, Co/NiO, Co/Al2O3, Co/NiO–Al2O3, Co/CuO–Al2O3, and Co/CuO–NiO–Al2O3). Support materials are synthesized by the co-precipitation method. Then, Co is doped into support materials by the impregnation method. It is found that Co/CuO–NiO–Al2O3 catalyst exhibited high reaction activity with a maximum hydrogen generation rate (HGR) of 2067.2 ml min?1 gcat?1 at 25 °C. The effect of temperature of the solution, Co amount, and recyclability of the catalyst on hydrogen generation with Co/CuO–NiO–Al2O3 catalyst is investigated in detail. In addition, the highest HGR for Co/CuO–NiO–Al2O3 catalyst is obtained at 55 °C as 6460.0 ml min?1 gcat?1. The activation energy is calculated to be 31.59 kJ mol?1 using Co/CuO–NiO–Al2O3 catalyst. Co/CuO–NiO–Al2O3 catalyst exhibits zero-order reaction kinetics concerning NaBH4 concentration. In addition, the Co/CuO–NiO–Al2O3 catalyst provided high reusability after 5 cycles.  相似文献   

10.
The hydrolysis of ammonia borane (NH3BH3) is recognized as an efficient way of hydrogen generation if it can be effectively catalyzed. In this work, a series of cobalt–molybdenum–boron (Co–Mo–B) nanoparticles (NPs) on copper (Cu) foil are introduced as catalysts for NH3BH3 hydrolysis by electroless deposition method. The influence of the depositing pH value on the catalytic property is investigated by adjusting the pH value ranged from 10.5 to 12.0. By optimizing the value to 11, the ultrafine Co–Mo–B NPs with the grain size around 4.3 nm show the best catalytic property for NH3BH3 hydrolysis. The hydrogen generation rate reaches 5818.0 mL·min−1·g−1 when the hydrolysis temperature is 298 K. The thermodynamic tests show that the lower activation energy (Ea) is estimated to be 59.3 kJ·mol−1. It can be found that the catalytic property in this work overtakes that of partial non-precious metal NPs, and is even better than some precious metal NPs previously reported. The hydrolysis reaction of NH3BH3 catalyzed by ultrafine Co–Mo–B NPs is a non-spontaneous process. In addition, the cycling ability of the ultrafine Co–Mo–B NPs is also studied and the results demonstrate that the catalyst is a recyclable one toward the hydrolysis of NH3BH3 under mild reaction conditions.  相似文献   

11.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

12.
The current study provided the first example to develop the Fe-based catalyst for COx-free hydrogen production via ammonia decomposition through the unique MgFe-layered double hydroxides (MgFe-LDHs) of different stoichiometric Mg/Fe ratio. The so obtained Fe-based catalyst is low-cost, readily obtainable, and environmentally friendly. Structurally, the Fe(FeNx) species are 3D-isolated by the nano-MgO entities, improving anti-sintering potential of Fe(FeNx); and electronically, the Fe (FeNx) species are promoted by the nano-MgO matrix, showing the strongest promoting effect of MgO on Fe(FeNx). At a GHSVNH3 of 150,000 mL gcat−1 h−1, the current N–Mg5.3FeOm catalyst can give an outstanding H2 formation rate of 9.83 mol gcat−1 h−1 at 680 °C and a TOFH2 = 2.19 s−1 at 530 °C. The influence of Mg/Fe constitution on catalyst structure, surface property, and performance was systematically investigated. The in-situ ammonia treatment was superior to the usually adopted hydrogen pre-reduction for the Fe–Mg oxide precursor, leading to easy development of small sized FeNx specimen and activity enhancement.  相似文献   

13.
Using liquid formaldehyde as a carrier to obtain clean hydrogen is a promising method. The development of inexpensive catalysts with high activity and stability is crucial for this reaction. Herein, bimetallic Pd–Bi nanocatalysts with different Pd to Bi ratios were prepared through one step in-situ reduction of BiOCl and Pd2+ ions by sodium borohydride (NaBH4). The effect of Pd/Bi ratios and reaction parameters such as formaldehyde concentration and sodium hydroxide concentration on hydrogen production performance were systematically studied. By optimizing the Pd contents in Pd–Bi nanocatalysts under the optimized reaction conditions, an much higher hydrogen (H2) production rate of 472.2 mL min?1g?1 over Pd/BiOCl-3% under 298.15 K can be achieved, which is 4.01 times that of pure Pd nanoparticles (NPs) and much higher than most reported metal-based catalysts.  相似文献   

14.
Effective and reusable catalysts with high performance are essentially necessary for NaBH4 based on-demand hydrogen generators to the widespread use for energy conversion in fuel cell power systems. Herein, we report a facile synthesis of surfactant-directed polypyrrole-supported Co–W–B nanoparticles as a robust catalyst for efficient hydrolysis of NaBH4 reaction. This non-noble metal catalyst provides much higher catalytic activity than a conventional cobalt boride catalyst. By incorporating tungsten to catalyst composition and tuning molar ratio of W/(Co + W), about a four-fold higher hydrogen generation rate was attained compared to bare Co–B. Among the all catalysts tested, Co–W–B/PPy with 7.5% W possessed the remarkable catalytic performance of 9.92 L min?1 g?1 and high stability over five cycles with the apparent activation energy of 49.18 kJ mol?1.  相似文献   

15.
Innovative metal boride nanocatalysts containing crystalline Co–Ni based binary/ternary boride phases were synthesized and used in the hydrolysis of NaBH4. All the as-prepared catalysts were in high-purity with average particle sizes ranging between ~51 and 94 nm and consisting of different crystalline phases (e.g. CoB, Co2B, Co5B16, NiB, Ni4B3, Ni2Co0·67B0.33). The synergetic effect of the different binary/ternary boride phases in the composite catalysts had a positive role on the catalytic performances thus, while the binary boride containing phases of unstable cobalt borides or single Ni4B3 were not showing any catalytic activity. The Co–Ni–B based catalyst containing crystalline phases of CoB–Ni4B3 exhibited the highest H2 production rate (500.0 mL H2 min?1 gcat?1), with an apparent activation energy of 32.7 kJ/mol. The recyclability evaluations showed that the catalyst provides stability even after the 5th cycle. The results suggested that the composite structures demonstrate favorable catalytic properties compared to those of their single components and they can be used as alternative and stable catalysts for efficient hydrogen production from sodium borohydride.  相似文献   

16.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   

17.
In this work, cobalt–tungsten–boron nanoparticles (Co–W–B) have been successfully deposited on foam Ni to manufacture thin-film catalysts by electroless plating technique and applied in hydrogen generation from ammonia borane (NH3BH3) hydrolysis. Physicochemical properties of Co–W–B nanoparticles are characterized by XRD (Powder X–ray diffraction), SEM (Scanning electron microscopy), and EDS (Energy dispersive X–ray spectroscopy). It is observed that Co–W–B showed irregular spherical structure on the surface of foam Ni substrate. An increase of depositional pH value in the preparation process leads to the change of particle size. When the pH value is equal to 11.5, as-synthesized Co–W–B exhibits the smaller particle size, which suggests that depositional pH value has directly impacted the nucleation and growth of catalysis particles. The optimized Co–W–B catalyst displays higher catalytic activity toward NH3BH3 hydrolysis with a specific rate of hydrogen generation of 12933.3 mL min?1·g?1 at room temperature. Moreover, the lower apparent activation energy of 47.3 kJ mol?1 is achieved. Compared with previously reported catalysts, the as-obtained catalytic performance is situated at the better rank. Moreover, the reusability has been investigated under the mild NH3BH3 hydrolysis conditions. It reveals that as-fabricated thin-film Co–W–B maintains excellent durability after five cycles. A possible mechanism for the released hydrogen from NH3BH3 hydrolysis using Co–W–B catalyst has been proposed.  相似文献   

18.
Electrospun nanofibers are prepared through electrospinning followed by post-treatment and preferred to use in catalytic applications. The electrospinning provides advantages for active catalysts design based on activity profiles and features of catalyst. In the present study, we fabricated nano-crystalline cobalt oxide (Co3O4) catalyst by electrospinning technique followed by thermal conditioning. Polyacrylonitrile (PAN) based Co as-spun mats (Co/NMs) with homogeneous diameter were prepared by electrospinnig process under several conditions as applied voltage (15–25 kV), working distance (5–7.5 cm) with the feed rate of 1 ml min−1. The calcination process as a post-treatment was applied at different temperatures (232 °C, 289 °C and 450 °C) to obtain electrospun nano-crystalline Co3O4 catalyst. Co/NMs catalysts were characterized by XRD, SEM, TEM, XPS, FT-IR, TG/DTG, and ICP-MS techniques. The parametrically study was performed for evaluating the hydrogen production activity of catalyst from sodium borohydride (NaBH4, SBH) and its originated compounds as ammonia borane (NH3BH3, AB) and methyl-amine borane (CH3NH2BH3, MeAB). The relation between the internal-external properties and catalytic activities of catalysts for hydrogen production was investigated. The beadless Co/NMs-1 catalyst with homogeneous diameter was obtained under electrospinnig process conditions at 15 kV applied voltage and 7.5 cm working distance. All catalysts showed activity for hydrogen production, also the significant effect of post treatment process was observed on the catalytic activity as given order: Co/NMs-1450 > Co/NMs-1289 > Co/NMs-1 > Co/NMs-1232. Furthermore, mesoporous Co3O4 cubic crystals (26 nm) in fibrous architecture was prepared by 450 °C-post-treatment. Hydrogen production rates were recorded at 60 °C as 2.08, 2.20, and 6.39 l H2.gcat−1min−1 for NaBH4, CH3NH2BH3, and NH3BH3, respectively.  相似文献   

19.
Ethanol steam reforming (ESR) is one of the most promising reliable and recyclable technologies for hydrogen production. However, the development of robust, efficient Ni-based catalysts that minimize metal sintering and carbon deposition remains a key challenge. The influence of cobalt loading and ESR conditions on H2 selectivity and catalytic stability is the focus of this study. Ni–Co/Al2O3 catalysts with various Co percentages were prepared by the co-impregnation method and complementary characterization tests were performed. Among the catalysts tested, Ni–Co/Al2O3 (5 wt% Co) exhibited the smallest metal crystallite size, the highest surface area, and the best catalytic performance. Thereafter, the effects of temperature, LHSV and S:C molar ratio were studied. 100% ethanol conversion and maximum H2 selectivity (95.14%) were reached at 600 °C, 0.05 L/gcat.h and S:C molar ratio of 12:1. Furthermore, ethanol turnover frequency (TOF) was computed for each catalyst. TOF results showed that the Ni–Co interaction had an impact on the catalytic activity. Finally, Ni2CoAl was subjected to 50-h stability test and only 6.12 mgcarbon/gcat.h coke deposition was observed.  相似文献   

20.
A mesoporous carbon‐confined cobalt (Co@C) catalyst was fabricated by pyrolysis of macroscale Co‐metal–organic framework (MOF) crystals and used to catalyze NaBH4 hydrolysis for hydrogen production. To reveal the structural changes of cobalt nanoparticles, we characterized the fresh and used Co@C catalysts using X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption. This MOF‐derived Co@C exhibits high and stable activity toward NaBH4 hydrolysis. No obvious agglomeration of Co nanoparticles occurred after five consecutive runs, implying good resistance of Co@C composite to metal aggregation. The kinetics of NaBH4 hydrolysis was experimentally studied by changing initial NaBH4 concentration, NaOH concentration, and catalyst dosage, respectively. It was found that the hydrogen generation rate follows a power law: r = A exp (?45.0/RT)[NaBH4]0.985[cat]1.169[NaOH]?0.451 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号