首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through melt hydrogenation, a gradient microstructure (α″ + α′)/(α + βH) has been observed in TC21 alloy. The addition of hydrogen induces martensite transformation and increases the volume fraction of β. It is found that the absorption process of hydrogen atoms can be divided into melting and cooling stages. During cooling, the continuous absorption of hydrogen and the corresponding decrease of freezing point of melt extend solidification time of melt and lead to hydrogen enrichment in the upper of the specimen, which induces the formation of the gradient structure. The hydrogenated TC21 alloy shows higher thermoplasticity compared with the unhydrogenated TC21 alloy. The flow stress of the upper part of the hydrogenated alloy is lower than that of the center part. A gradual variation has been observed in the microhardness along the gradient direction due to variation in the microstructure. The microhardness of the upper surface drops about 45% with 14.6 at.%H.  相似文献   

2.
In this paper, we present the synthesis, first hydrogenation kinetics, thermodynamics and effect of cycling on the hydrogen storage properties of a V0.3Ti0.3Cr0.25Mn0.1Nb0.05 high entropy alloy. It was found that the V0.3Ti0.3Cr0.25Mn0.1Nb0.05 alloy crystallizes in body-centred cubic (BCC) phase with a small amount of secondary phase. The first hydrogenation is possible at room temperature without incubation time and reaches a maximum hydrogen storage capacity of 3.45 wt%. The pressure composition isotherm (P–C–I) at 298 K shows a reversible hydrogen desorption capacity of 1.78 wt% and a desorption plateau pressure of 80.2 kPa. The capacity loss is mainly due to the stable hydride with the desorption enthalpy of 31.1 kJ/mol and entropy of 101.8 J/K/mol. The hydrogen absorption capacity decreases with cycling due to incomplete desorption at room temperature. The hydrogen absorption kinetics increases with cycling and the rate-limiting step is diffusion-controlled for hydrogen absorption.  相似文献   

3.
We determined the kinetics of hydrogen absorption of the hypoeutectic Mg-10 wt.% Ni alloy in the as-cast state and after processing by four passes of equal channel angular pressing (ECAP). While during the first hydrogenation cycle the ECAP-modified alloy exhibited faster absorption than its as-cast counterpart, this advantage was lost after the second hydrogenation cycle; parity was regained after six cycles. We attributed these differences in the hydrogen absorption kinetics to the formation of large (tens of micrometers) faceted Mg crystals observed during the first hydrogenation cycle. These crystals were significantly larger in the ECAP-modified alloy than in its as-cast counterpart. We discussed the growth of large Mg crystals during hydrogenation in terms of self-diffusion of Mg atoms driven by the metal-hydride transformation stress. The larger size of these crystals in the ECAP-processed alloy was attributed to the acceleration of diffusion by ECAP. Our metallographic studies revealed a number of microstructural changes in the alloys upon hydrogenation, such as cracking, accumulation of plastic strain in large Mg crystals, and re-distribution of the dispersed particles of Mg2Ni phase in the partly hydrogenated alloys.  相似文献   

4.
In this paper, effect of air exposure on first hydrogenation kinetics of TiFe +4 wt% Zr + 2 wt% Mn alloy was studied. After 7 days of air exposure, the first hydrogenation kinetics of the alloy was slow with a long incubation time. An air exposure of 30 days made the alloy totally inert to hydrogen. In an attempt to recover the hydrogen absorption ability of the alloy, it was mechanically treated using cold rolling and ball milling processes. It was found that the air exposed alloy could be successfully hydrogenated after ball milling and after cold rolling with some loss in hydrogen storage capacity. The loss in storage capacity was more important after ball milling than after cold rolling.  相似文献   

5.
The mechanism of hydrogen-restrained crack propagation and practical application of thermohydrogen treatment in a TiAl-based alloy was investigated in this study. Hydrogenated and unhydrogenated alloys were subjected to high-temperature compression test, with a temperature range 1050–1200 °C and strain rate range 0.001–1 s−1. The results showed that crack propagation was restrained due to hydrogen addition. The main mechanism of hydrogen-restrained crack propagation of such alloy was revealed that hydrogen-promoted lamella bending and hydrogen-decreased Young's modulus induced inter-lamellar cracks transforming into trans-lamellar cracks, decreasing cracks in the hydrogenated alloy. Additionally, hydrogen-induced mechanical twinning in γ-phase lamellae partly restrained inter-lamellar crack propagation. In the two-step forging process, the optimum forging parameters were determined. It was found that hydrogen could effectively restrain crack propagation during the two-step forging process. Hydrogen refined grains of the forged billets, which improved toughness of such billets. The hydrogen content of the forged hydrogenated billets could be decreased to a desired value, and the phase composition and content were basically identical to those of the initial unhydrogenated alloy.  相似文献   

6.
In this paper, a three-dimensional hydrogen absorption model is developed to precisely study the hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed 3D simulation results show that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that hydrogen absorption is very efficient early during the hydriding process; thus, the local cooling effect is not influential. On the other hand, non-uniform distributions are predicted at the subsequent absorption stage, which is mainly due to differential degrees of cooling between the vessel wall and core regions. In addition, a parametric study is carried out for various designs and hydrogen feed pressures. This numerical study provides a fundamental understanding of the detailed heat and mass transfer phenomena during the hydrogen absorption process and further indicates that efficient design of the storage vessel and cooling system is critical to achieve rapid hydrogen charging performance.  相似文献   

7.
Metal-hydride (MH) reactors are one of the most promising approaches for hydrogen storage because of their low operating pressure, high storage volumetric density and high security. However, the heat transfer performance of the MH reactor for high hydrogenation rate is inferior. In this study, the heat transfer and hydrogen absorption process of metal hydride tank performance in Mg2Ni bed is analyzed numerically using commercial ANSYS-FLUENT software. The MH reactor is considered a cylindrical bed including a helical tube along with a central straight return tube for the cooling fluid. The effects of geometrical parameters including the tube diameter, the pitch size and the coil diameter as well as operational parameters on the heat exchanged and hydrogen absorption reactive time are evaluated comprehensively. The results showed that the helical heat exchanger along with central return tube could effectively improve heat exchanged between the cooling fluid and the metal alloy and reduce the temperature of the bed results in a higher rate of hydrogen absorption. For a proper configuration and geometry of the helical coil heat exchanger with a central return tube, the absorption reaction time is reduced by 24% to reach 90% of the storage capacity. After the optimization study of the geometrical parameters, a system with the heat exchanger tube diameter of 5 mm, coil diameter of 18 mm and the coil pitch value of 10 mm is recommended to have lower hydrogen absorption time and higher hydrogen storage capacity. The presented MH reactor can be applied for improvement of heat exchange and absorption process in industrial MH reactors.  相似文献   

8.
For hydrogen storage applications a nanocrystalline Mg90Ni8RE2 alloy (RE = Y, Nd, Gd) was produced by melt spinning. The microstructure in the as-cast, melt-spun and hydrogenated state was characterized by X-ray diffraction and electron microscopy. Its activation, hydrogenation/dehydrogenation properties and cycle stability were examined by thermogravimetry in the temperature range from 50 °C to 385 °C and pressures up to 30 bar H2. It was found that the activated alloy can reach a reversible gravimetric hydrogen storage density of up to 5.6 wt.%-H. Furthermore, the reversible gravimetric hydrogen storage density increases with the number of hydrogenation/dehydrogenation cycles, while the dehydrogenation rate remained unchanged. This observation was attributed to the increase of the specific surface area of the ribbon due to cracking during repeated cycling. However, the microstructure of the hydrogenated alloy remained nanocrystalline throughout cycling.  相似文献   

9.
To further explore the application feasibility of Zr2Co alloy in tritium-related fields, hydrogenation/dehydrogenation properties of this material of crystalline or amorphous structure, prepared by arc melting or melt spinning, were studied by pressure-composition temperature measurement, X-ray diffraction, differential scanning calorimeter, thermal desorption spectroscopy. It was found that the two kinds of Zr2Co alloys can absorb hydrogen in a close full concentration of ~9 mmol/g, and may have similar equilibrium hydrogen pressure in the order of 10?6 Pa at room temperature. In their hydrogenated samples various hydrides were observed to form, including ZrH2, Zr2CoH5, ZrCoH3 and an amorphous one with gradually decreasing general thermostability. The amorphous alloy exhibited easier hydrogen induced disproportionation caused by highly stable ZrH2 and much slower hydrogen absorption kinetics. This disproportionation behavior of the crystalline alloy was found to be entirely suppressed by changing heating process. The results firmly indicate that crystalline Zr2Co alloy could be more favorable for tritium treatment due to very low equilibrium pressure and the feasibility of eliminating the disproportionation.  相似文献   

10.
Structure and hydrogen storage properties of three Ti31V26Nb26Zr12M5 multicomponent alloys with M = Fe, Co and Ni are investigated. The alloys synthesized by arc melting are characterized via X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The as-cast ingots present multi-phase dendritic structures composed mainly of BCC phases and small amounts of C14 Laves phases. Upon hydrogenation, each alloy absorbs around 1.9 H/M (number of hydrogen atoms per metal atoms) at room temperature. XRD of fully hydrogenated samples shows the formation of multi-phase structures composed of FCC and C14 hydrides. Thermo Desorption Spectroscopy (TDS) shows that the hydrogenated alloys present multi-step desorption processes with wide temperature ranges and low onset temperatures. XRD of partially hydrogenated samples indicate the presence of intermediate BCC hydrides. XRD of desorbed samples suggest reversible reactions of absorption/desorption: BCC + C14 alloy ? intermediate BCC hydride + C14 hydride ? FCC + C14 hydrides.  相似文献   

11.
In the present work the influence of roughness of the material surface with hydrogen absorption in Ti–6Al–4V alloy during four hydrogenated cycles is studied. The Ti–6Al–4V alloy samples were hydrogenated during several cycles at 650 °C for two hours, in 50% hydrogen and 50% argon atmospheres, 1 atm pressure and a flux of 50 cm3/min each one. The hydrogen concentrations are measured using Elastic Recoil Detection Analysis technique; meanwhile the roughness is measured using an Atomic Force Microscope. X-ray Diffraction analysis shows changes in crystal orientation due to hydrogen absorption. The hydrogen capacity of the Ti–6Al–4V alloy is observed to be directly correlated to the surface quality of the sample during the first hydrogenation cycles, but in the fourth cycle, the hydrogen absorption is almost equal for all the samples independently of their surface roughness.  相似文献   

12.
Hydrogen is an energy carrier which can be utilized in many sectors like stationary and transportation energy with nearly zero emission. Hydrogen energy is more efficient when compared to other energy sources. Hydrogen can be a replacement for fossil fuels in future as it emits only water when it is burned. In this work a mathematical model of transfer of hydrogen between two tanks has been developed using MATLAB simulink software version 21. Flow of hydrogen inside the pipe is controlled by orifice and diameter of this orifice and pipe diameter itself has some impact on outcome parameters such as inlet temperature of pipe, outlet temperature of pipe, heat transfer from one tank to other tank and hydrogen gas flow rate. The influence of orifice diameter as well as initial pressures on outcome parameters of hydrogen gas transfer model has analyzed in this work. From the simulation results it is inferred that when one initial pressure kept constant and other initial pressure keep on varying, no change in inlet temperature, decrease in outlet temperature, increase in heat transfer and increase in gas flow rate were observed when orifice diameter increase in size from 2 cm then 4 cm and then 6 cm. The research work has significant guidance for safety and efficient way of transporting hydrogen through pipeline from one tank to other tank.  相似文献   

13.
Vanadium-based hydrogen storage alloys have been widely investigated; however, alloys in the cast state are typically coarse-grained. In this study, an as-cast V45Fe15Ti20Cr20 medium-entropy alloy was prepared by arc melting, and microstructural analysis revealed that the alloy was composed of nanocrystals. The initial pretreatment temperature of the alloy was approximately 100 K lower than that of the as-cast coarse-grained alloy. At room temperature, the time required for the alloy to reach 90% saturation was only 140 s, indicating excellent hydrogen absorption kinetics. The alloy is fully activated after two hydrogen absorption/desorption cycles. The phase transformation of the alloy in the early hydrogenation stage was investigated using X-ray diffraction, and the results showed that the BCC phase was completely transformed into the BCT phase when hydrogen uptake was performed for 6 s. Furthermore, the apparent activation energy of dehydrogenation in the present alloy calculated using the Kissinger method was 69.8 ± 0.8 kJ/mol. The pressure-composition-isotherms tests showed that the hydrogen absorption capacity of the alloy at 295 K was 2.12 wt%. The hydrogenation/dehydrogenation enthalpy change of the alloy was calculated by the Van't Hoff equation, which was 30.90 ± 1.47 and 33.95 ± 0.41 kJ/mol, respectively. The present work demonstrates that nanostructured vanadium-based hydrogen storage alloys can be fabricated using traditional casting techniques. Our study also enriches the understanding of the microstructures of medium-entropy alloys, which may provide positive guidance for the design of novel vanadium-based hydrogen storage alloys.  相似文献   

14.
Electroless copper plating and colloidal Pd nanoparticle impregnation were shown to greatly improve the tolerance of a multi-component AB5-type alloy towards air impurities. Treated alloys demonstrated improved hydrogen absorption and desorption rates and tolerance towards air impurities when exposed to 0.5 MPa initial hydrogen pressure at room temperature. In addition, the readily-activated response was retained after the treated alloys had been exposed to air for 24 h. The removal of the surface oxide species and the spillover mechanism may have accounted for the enhanced hydrogenation kinetics of the alloys after treatment. Slight degradation of the hydrogen absorption rates with increasing air exposure was observed and was attributed to limitations in the protection provided by the Pd–Cu layer, resulting in a slow growth of an oxide layer on the alloy surface, which acted as a barrier for the transport of hydrogen atoms, towards the core of the AB5-type alloy material after hydrogen spillover.  相似文献   

15.
In this paper, we describe the self-ignition combustion synthesis (SICS) of LaNi5 utilizing the hydrogenation heat of metallic calcium at different hydrogen pressures, and focus on the effect of hydrogen pressure on the ignition temperature and the initial activation of hydrogenation. In the experiments, La2O3, Ni, and Ca were dry-mixed, and then heated at 0.1, 0.5, and 1.0 MPa of hydrogen pressure until ignition due to the hydrogenation of calcium. The products were recovered after natural cooling for 2 h. The results showed that the ignition temperature lowered with hydrogen pressure. The products changed from bulk to powder with hydrogen pressure. This was probably caused by volume expansion due to hydrogenation at higher pressure. The product obtained at 1.0 MPa showed the highest hydrogen storage capacity under an initial hydrogen pressure of 0.95 MPa. The results of this research can be applied as an innovative production route for LaNi5 without the conventional melting of La and Ni.  相似文献   

16.
Metal-hydrides offer a potentially competitive method for compressing hydrogen, particularly where waste heat is available. Metal hydrides are metal alloys or intermetallic compounds that react reversibly with H2. They readily absorb low-pressure H2 at low temperature, and then release H2 at a higher pressure when the temperature is raised. The high pressure H2 is released at a pressure above that expected from standard press-temperature relations. The absorption and desorption pressures of the hydrides are determined by their thermodynamic properties (enthalpy and entropy). To achieve compression ratios above about 10, more than one stage of compression is typically required. The challenge is to find alloy pairs that can work together effectively to achieve the desired compression from the heating/cooling available. Previously, a thermodynamic model has been proposed for identifying suitable metal hydrides that can be paired together to achieve a desired compression. This paper describes methods used previously in the literature to select alloy pairs, and applies the current method to an example selection of 33 hydrides with potential for hydrogen compression. The example application aims to find pairs that can compress a H2 stream from 10 to 350 bar using a temperature range of 30–150 °C, however the theory could readily be adapted to different compression ratios and temperature ranges. For the specific example evaluated none of the potential pairs were able to meet the compression target, however, modification of the parameters (heating/cooling availability) or alloy properties could resolve this issue.  相似文献   

17.
We prepared an ordered Mg3Cd alloy by high energy ball milling of elemental powders. The synthesized alloy exhibited good hydrogenation kinetics and reversibly absorbed about 2.8 wt. % of hydrogen. The temperature dependence of hydrogenation kinetics of the alloy measured in the range of temperatures covering the order-disorder phase transformations in the Mg3Cd and MgCd phases did not exhibit any anomalies and could be fitted with a single Arrhenius line. The measured apparent activation energy (69 ± 2 kJ/mol) hinted that hydrogenation process was controlled by diffusion of Cd in metallic phase. The pressure-composition isotherms exhibited negligible pressure hysteresis and sloping pressure plateau. Based on microstructural evidence obtained with the aid of X-ray diffraction and scanning electron microscopy, we built a thermodynamic model predicting the plateau hydrogen pressure for partially hydrogenated alloy. The predictions of the model were in a good agreement with the experimental data. Finally, we discussed the origins and the growth mechanisms of Cd whiskers observed in the alloys after full hydrogenation cycle.  相似文献   

18.
Ternary Mg86Y10Ni4 alloy was successfully prepared by vacuum induction melting and subsequent melt-spinning technique. The phase composition and microstructure of the melt-spun and hydrogenated samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The melt-spun alloy had an amorphous structure, and it transformed into nanocrystalline during the first hydrogenation process. The hydrogenated sample was composed of MgH2, Mg2NiH4, YH2, and a small amount of YH3. The hydrogen absorption/desorption kinetics and thermodynamics were measured by Sievert's apparatus at various temperatures. It was found that the melt-spun Mg86Y10Ni4 alloy could be fully activated after five hydrogenation and dehydrogenation cycles at 380 °C, and it exhibited a reversible gravimetric hydrogen storage capacity of about 5.3 wt%. The enhanced hydrogen sorption kinetics during the first few cycles can be attributed to the increased specific surface caused by the pulverization and cracking of the alloy particles. The activation energy for dehydrogenation reaction was determined to be 67 kJ/mol and 71 kJ/mol by using Arrhenius equation and Kissinger equation respectively. The thermodynamics of the sample was also evaluated by pressure–composition–isotherms, and the results shown that the enthalpy and entropy changes of Mg/MgH2 transformation in the Mg86Y10Ni4 alloy were slightly higher than that of pure Mg/MgH2.  相似文献   

19.
The true stress-strain curves of TC21 titanium alloy charged with up to 0.7 wt.% hydrogen were obtained by the isothermal hot compression tests which were carried out on an Instron 5500 machine at 1023 to 1223 K and 0.001 to 0.1 s−1. The dependence of the steady state flow stress on hydrogen content was determined. The results showed that with the increase of hydrogen content flow stress decreased at lower hydrogen content and then increased at higher hydrogen content. Suitable hydrogen addition can significantly decrease the flow stress and improve the hot workability of TC21 titanium alloy. The flow stress behaviors and the dependence of hydrogen content on flow stress were clarified by microstructural observation. The optimum hydrogen content at different deformation temperature was determined.  相似文献   

20.
Lead–lithium eutectic (Pb87Li17) alloy is a candidate material to be used as a secondary tritium breeder, neutron multiplier and heat transfer agent in the fusion reactor. The tritium thus produced in the alloy may be soluble or appear as a new phase of lithium-tritides and/or lead-tritides, which eventually affect the performance of Pb83Li17 eutectic. Therefore, solubility of tritium in the alloy at the operating conditions of the fusion reactor is a subject matter of investigation. Tritium being the isotope of hydrogen behaves more or less similar to the hydrogen. In the present investigation the solubility of hydrogen in the Pb83Li17 has been investigated as a function of temperature and pressure. It was found that, hydrogen solubility in the Pb87Li17 alloy is almost constant above 350 °C. Hydrogen solubility increases with increase of temperature up to 400 °C. Hydrogen solubility is 120 ppm at 400 °C and 800 Torr hydrogen pressure. The solubility decreases on further rise in temperature from 400 °C. However, at all the temperatures hydrogen solubility increased with increase of partial pressure of hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号