首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of a catalyst and ball milling process was found to be one of the efficient method to reduce the decomposition temperature and improve the desorption kinetics of lithium aluminium hydride (LiAlH4). In this paper, a transition metal oxide, LaFeO3 was used as a catalyst. Decomposition temperature of the 10 wt% of LaFeO3-doped LiAlH4 system was found to be lowered from 143 °C to 103 °C (first step) and from 175 °C to 153 °C (second step), respectively. In isothermal desorption kinetics, the amount of hydrogen released of the doped sample was improved to 3.9 wt% in 2.5 h at 90 °C. Meanwhile, the undoped sample had released less than 1.0 wt% of hydrogen under the same condition. The activation energy of the LaFeO3-doped LiAlH4 sample was measured to be 73 kJ/mol and 90 kJ/mol for the first two dehydrogenation reactions compared to 107 kJ/mol and 119 kJ/mol for the undoped sample. The improvements of desorption properties were the results from the formation of LiFeO2, Fe and La or La-containing phase during the heating process.  相似文献   

2.
Study on the catalytic roles of MgFe2O4 on the dehydrogenation performance of LiAlH4 was carried out for the first time. Notable improvement on the dehydrogenation of LiAlH4–MgFe2O4 compound was observed. The initial decomposition temperatures for the catalyzed LiAlH4 were decreased to 95 °C and 145 °C for the first and second stage reactions, which were 48 °C and 28 °C lower than the milled LiAlH4. As for the desorption kinetics performance, the MgFe2O4 doped-LiAlH4 sample was able to desorb faster with a value of 3.5 wt% of hydrogen in 30 min (90 °C) while the undoped LiAlH4 was only able to desorb 0.1 wt% of hydrogen. The activation energy determined from the Kissinger analysis for the first two desorption reactions were 73 kJ/mol and 97 kJ/mol; which were 31 and 17 kJ/mol lower as compared to the milled LiAlH4. The X-ray diffraction result suggested that the MgFe2O4 had promoted significant improvements by reducing the LiAlH4 decomposition temperature and faster desorption kinetics through the formation of active species of Fe, LiFeO2 and MgO that were formed during the heating process.  相似文献   

3.
LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3.  相似文献   

4.
LiAlH4 modified by different weight ratios of fluorographite (FGi) can be synthesized through mechanical ball-milling and their dehydrogenation behaviors were investigated. LiAlH4 particles distributed on the FGi surface with greatly decreased sizes are achieved, comparing with ball-milled pristine LiAlH4. Greatly reduced dehydrogenation temperatures are discovered in LiAlH4-FGi composites. Among these composites, LiAlH4-40FGi composite exhibits an ultra-fast hydrogen release at very low temperature as 61.2 °C, and 5.7 wt% hydrogen is liberated in seconds. Besides, the released hydrogen is of high purity according to MS test. Furthermore, XRD analysis on the dehydrogenated products proves that FGi changes the dehydrogenation reaction pathway of LiAlH4, through which the dehydrogenation reaction enthalpy change is remarkably reduced, leading to greatly improved hydrogen desorption properties. Such investigations have discovered the potential of solid-state way of producing hydrogen under ambient temperatures.  相似文献   

5.
The hydrogen storage properties of LiAlH4 doped efficient TiN catalyst were systematically investigated. We observe that TiN catalyst enhances the dehydrogenation kinetics and decreases the dehydrogenation temperature of LiAlH4. The dehydrogenation behaviors of 2%TiN–LiAlH4 are investigated using temperature programmed desorption (TPD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Interestingly, the onset hydrogen desorption temperature of 2%TiN–LiAlH4 sample gets lowered from 151.0 °C to 90.0 °C with a faster kinetics, and the dehydrogenation rate reached a maximum value at 137.2 °C. By adding a small amount of as-prepared TiN, approximately 7.1 wt% of hydrogen can be released from the LiAlH4 at 130 °C. Interestingly, the result of the FTIR indicates that the 2%TiN–LiAlH4 maybe restore hydrogen under 5.5 MPa hydrogen. Moreover, 2%TiN–LiAlH4 displayed a substantially reduced activation energy for LiAlH4 dehydrogenation.  相似文献   

6.
LiAlH4 is an ideal hydrogen storage material with a theoretical hydrogen storage capacity of 10.6 wt%. In order to reduce the hydrogen release temperature and increase the hydrogen release amount of LiAlH4, multilayer graphene oxide and nickel (FGO-Ni) composite catalyst were prepared by physical ball milling and doped into LiAlH4. The effect of FGO-Ni composite catalyst on the dehydrogenation performance of LiAlH4 was studied by pressure-composition-temperature apparatus, scanning electron microscope (SEM) and X-ray diffractometer. The results show that, compared with pure LiAlH4, the hydrogen release time of LiAlH4 doped with 9 wt%FGO-3wt%Ni is obviously shortened about 90min at 150 °C and the hydrogen release amount of LiAlH4 doped with 9 wt%FGO-3wt%Ni also increased 1.8 wt%. Importantly, the dehydrogenation amount of LiAlH4 (9 wt%FGO)-3wt% could reach 4 wt% at 135 °C which was 4 times higher than that of the pure LiAlH4. At the same temperature, the hydrogen release of pure LiAlH4 was only 0.84 wt%. In contrast, doping FGO-Ni composite catalyst reduces the hydrogen release temperature of LiAlH4 and weakens the hydrogen release barrier. Forthermore, SEM results showed that doping FGO-Ni reduced the agglomeration between LiAlH4 particles and increased the specific surface area of the sample, which improving the hydrogen release properties of LiAlH4.  相似文献   

7.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

8.
The effects of K2TiF6 on the dehydrogenation properties of LiAlH4 were investigated by solid-state ball milling. The onset decomposition temperature of 0.8 mol% K2TiF6 doped LiAlH4 is as low as 65 °C that 85 °C lower than that of pristine LiAlH4. Isothermal dehydrogenation properties of the doped LiAlH4 were studied by PCT (pressure–composition–temperature). The results show that, for the 0.8 mol% K2TiF6 doped LiAlH4 that dehydrogenated at 90 °C, 4.4 wt% and 6.0 wt% of hydrogen can be released in 60 min and 300 min, respectively. When temperature was increased to 120 °C, the doped LiAlH4 can finish its first two dehydrogenation steps in 170 min. DSC results show that the apparent activation energy (Ea) for the first two dehydrogenation steps of LiAlH4 are both reduced, and XRD results suggest that TiH2, Al3Ti, LiF and KH are in situ formed, which are responsible for the improved dehydrogenation properties of LiAlH4.  相似文献   

9.
Lithium alanate (LiAlH4) is considered as a promising material for storing hydrogen (H2) in solid-state form for onboard applications due to its advantage of high gravimetric H2 capacity. LiAlH4 could release H2 ~7.9 wt.% when heated up to ~250 °C. Nevertheless, the high desorption temperature, sluggish desorption kinetics, and irreversibility hamper the application of LiAlH4 for solid-state H2 storage materials. Therefore, in this study, we have used aluminum titanate (Al2TiO5) as an additive to diminish the desorption temperature and enhance the desorption kinetics of LiAlH4. The addition of a small amount of Al2TiO5 (5 wt.%) into LiAlH4 significantly decreased the decomposition temperature and enhanced the desorption kinetics, in which Al2TiO5-doped LiAlH4 started to release H2 at ~90 °C and was able to desorb H2 as much as ~3.5 wt.% at 90 °C within 1 h. Without the catalyst, pure LiAlH4 starts to release H2 at ~145 °C and only desorbs H2 as low as 0.3 wt.% at 90 °C within 1 h. The activation energies for H2 release in the two-step desorption process of LiAlH4 were reduced after catalysis with Al2TiO5. The activation energies of as-milled LiAlH4 were 80 kJ/mol and 91 kJ/mol, respectively, as calculated by the Arrhenius plot. The activation energies were lowered to 68 kJ/mol and 79 kJ/mol after milling with Al2TiO5. The scanning electron microscopy images revealed that the LiAlH4 particles became smaller and less agglomerated when Al2TiO5 was added. It is believed that the in-situ formation of active species during the desorption process and reduction in particles size play a vital role in improving the dehydrogenation properties of the Al2TiO5-doped LiAlH4 system.  相似文献   

10.
The effects of TiO2 nanopowder addition on the dehydrogenation behaviour of LiAlH4 have been studied. The 5 wt.% TiO2-added LiAlH4 sample showed a significant improvement in dehydrogenation rate compared to that of undoped LiAlH4, with the dehydrogenation temperature reduced from 150 °C to 60 °C. Kinetic desorption results show that the added LiAlH4 released about 5.2 wt% hydrogen within 30 min at 100 °C, while the as-received LiAlH4 just released below 0.2 wt.% hydrogen within same time at 120 °C. From the Arrhenius plot of the hydrogen desorption kinetics, the apparent activation energy is 114 kJ/mol for pure LiAlH4 and 49 kJ/mol for the 5 wt.% TiO2 added LiAlH4, indicating that TiO2 nanopowder adding significantly decreased the activation energy for hydrogen desorption of LiAlH4. X-ray diffraction and Fourier transform infrared analysis show that there is no phase change in the cell volume or on the Al-H bonds of the LiAlH4 due to admixture of TiO2 after milling. X-ray photoelectron spectroscopy results show no changes in the Ti 2p spectra for TiO2 after milling and after dehydrogenation. The improved dehydrogenation behaviour of LiAlH4 in the presence of TiO2 is believed to be due to the high defect density introduced at the surfaces of the TiO2 particles during the milling process.  相似文献   

11.
The effect of cobalt ferrite (CoFe2O4) nanopowder synthesised through a solvothermal method on the dehydrogenation properties of sodium alanate (NaAlH4) was studied for the first time. The onset decomposition temperature of NaAlH4 is significantly reduced after milling with CoFe2O4, in which the 10 wt% CoFe2O4-doped NaAlH4 sample starts to decompose at ~100 °C. In contrast, the as-milled NaAlH4 begins to decompose at ~200 °C, ~100 °C higher than the doped sample. With respect to desorption kinetic at constant temperature of 150 °C, the 10 wt% CoFe2O4-doped NaAlH4 sample desorbed ~2.2 wt% hydrogen within 30 min, whereas the as-milled NaAlH4 only desorbed below 0.2 wt% hydrogen. The Kissinger plot exhibited that the apparent activation energy (EA) for hydrogen release from NaAlH4 is significantly reduced after adding with 10 wt% CoFe2O4-doped NaAlH4. The EA values for the first and second stage dehydrogenation of the 10 wt% CoFe2O4-doped NaAlH4 composite are calculated as 80.3 and 88.2 kJ/mol, respectively, and these values are reduced at approximately 34.3 and 30.5 kJ/mol compared with the as-milled NaAlH4 (114.6 and 118.7 kJ/mol, respectively). Based on the X-ray diffraction result, the enhancement of desorption properties of NaAlH4 with the presence of CoFe2O4 is presumably due to the synergistic catalytic effect played by new active species (Co3O4 and Fe) that in situ formed during the desorption process.  相似文献   

12.
The dehydrogenation temperature of LiAlH4 was significantly reduced by the production of mixtures with ZrCl4. Stoichiometric 4:1, and 5 mol % mixtures of LiAlH4 and ZrCl4 were produced by ball milling at room temperature and ?196 °C, and tested for dehydrogenation at low temperature. Cryogenic ball-milling resulted in an effective way to produce reactive mixtures for hydrogen release; because of achieving small aggregates size (5–20 μm) in 10 min of cryomilling while preventing substantial decomposition during preparation. Dehydrogenation reaction in the mixtures LiAlH4/ZrCl4 started around 31–47 °C under different heating rates. Partial dehydrogenation was proved at 70 °C: 4.4 wt % for the 5 mol% ZrCl4–LiAlH4 mixture, and 3.4 wt % for the best 4:1 stoichiometric mixture. Complete dehydrogenation up to 250 °C released 6.4 wt% and 4.1 wt%, respectively. Dehydrogenation reactions are exothermic, and the LiAlH4/ZrCl4 mixtures are unstable and difficult to handle. The activation energy of the exothermic reactions was estimated as 113.5 ± 9.8 kJ/mol and 40.6 ± 6.6 kJ/mol for 4LiAlH4+ZrCl4 and 5%mol ZrCl4+LiAlH4 samples milled in cryogenic conditions, respectively. The dehydrogenation pathway was changed in the LiAlH4/ZrCl4 mixtures as compared to pure LiAlH4. Dehydrogenation reaction is proposed to form Al, LiCl, Zr, and H2 as main products. Modification of the dehydrogenation reaction of LiAlH4 was achieved at the cost of reducing the total hydrogen release capacity.  相似文献   

13.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

14.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

15.
Transition metal halides are mostly used as dopants to improve the hydrogen storage properties of LiAlH4, but they will cause hydrogen capacity loss because of their relatively high molecular weights and reactions with LiAlH4. To overcome these drawbacks, active nano-sized TiH2 (TiH2nano) prepared by reactive ball milling is used to dope LiAlH4. It shows superior catalytic effect on the dehydrogenation of LiAlH4 compared to commercial TiH2. TiH2nano-doped LiAlH4 starts to release hydrogen at 75 °C, which is 80 °C lower than the onset dehydrogenation temperature of commercial LiAlH4. About 6.3 wt.% H2 can be released isothermally at 100 °C (800 min) or at 120 °C (150 min). The apparent activation energies of the first two dehydrogenation reactions of LiAlH4 are reduced by about 20 and 24 kJ mol−1, respectively. Meanwhile, the regeneration of LiAlH4 is realized through extracting the solvent from LiAlH4·4THF, which is obtained by ball milling the dehydrogenated products of TiH2nano-doped LiAlH4 in the presence of THF and 5 MPa H2. This suggests that TiH2 is also an effective catalyst for the formation of LiAlH4·4THF.  相似文献   

16.
Magnesium hydride (MgH2) is the best candidate material to store hydrogen in the solid-state form owing to its advantages such as good reversibility, high hydrogen storage capacity (7.6 wt%), low raw material cost and abundance in the earth. Nevertheless, slow desorption/absorption kinetics and high thermodynamic stability are two issues that have constrained the commercialization of MgH2 as a solid-state hydrogen storage material. So, to boost the desorption/absorption kinetics and to alter the thermodynamics of MgH2, hafnium tetrachloride (HfCl4) was used as a catalyst in this study. Different percentages of HfCl4 (5, 10, 15 and 20 wt%) were added to MgH2 and their catalytic influences on the hydrogen storage properties of MgH2 were investigated. Results showed that the 15 wt% HfCl4-doped MgH2 sample was the best composite to enhance the hydrogen storage performance of MgH2. The onset decomposition temperature of the 15 wt% HfCl4-doped MgH2 composite was decreased by ~75 °C compared to as-milled MgH2. Meanwhile, the desorption/absorption kinetic measurements showed an improvement compared to the undoped MgH2. From the Kissinger analysis, the apparent dehydrogenation activation energy was 167.0 kJ/mol for undoped MgH2 and 102.0 kJ/mol for 15 wt% HfCl4-doped MgH2. This shows that the HfCl4 addition reduced the activation energy of the hydrogen decomposition of MgH2. The desorption enthalpy change calculated by the van't Hoff equation showed that the addition of HfCl4 to MgH2 did not affect the thermodynamic properties. Scanning electron microscopy showed that the size of the MgH2 particles decreased and there was less agglomeration after the addition of HfCl4. It is believed that the decrease in the particle size and in-situ generated MgCl2 and Hf-containing species had synergistic catalytic effects on enhancing the hydrogen storage properties of the HfCl4-doped MgH2 composite.  相似文献   

17.
In this study, the hydrogenation performance of NaBH4 was modified by the addition of 10 wt% MgFe2O4 as the catalyst. The NaBH4 + 10 wt% of MgFe2O4 sample was prepared by a ball milling technique. The onset decomposition temperature of MgFe2O4-doped NaBH4 was decreased to 323 °C and 483 °C for the first and second stage of dehydrogenation as compared to the milled NaBH4 (497 °C). The desorption kinetics study showed that the addition of MgFe2O4 caused the sample to had faster hydrogen desorption with a capacity of 6.2 wt% within 60 min while the milled NaBH4 had only released 5.3 wt% of hydrogen in the same period of time. For the isothermal absorption kinetics, the total amount of hydrogen absorbed by the milled NaBH4 was 3.7 wt% while the NaBH4 + 10 wt% MgFe2O4 sample showed better absorption characteristic with a total amount of 4.5 wt% of hydrogen within 60 min. The calculated desorption activation energy from the Kissinger plot of NaBH4 + 10 wt% MgFe2O4 sample was 187 kJ/mol which reduced by 28 kJ/mol than the milled NaBH4 (215 kJ/mol). The in-situ formation of MgB6 and Fe3O4 after the dehydrogenation process indicates that these new species were responsible for the improved hydrogenation performances of NaBH4.  相似文献   

18.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

19.
Two-dimensional layered material of Ti3C2 has been used to improve the hydrogen desorption properties of LiBH4. The results of temperature-programmed dehydrogenation (TPD) and isotherm dehydrogenation (TD) demonstrate that adding the Ti3C2 contributes to the hydrogen storage performance of LiBH4. The dehydrogenation temperature decreases and the dehydrogenation rate increases with increasing the adding amounts of Ti3C2. The onset dehydrogenation temperature of LiBH4 + 40 wt% Ti3C2 composite is 120 °C and approximately 5.37 wt% hydrogen is liberated within 1 h at 350 °C. Furthermore, the activation energy of LiBH4 + wt.% Ti3C2 is also greatly reduced to 70.3 kJ/mol, much lower than that of pure LiBH4. The remarkable dehydrogenation property of the LiBH4+ 40 wt% Ti3C2 may be due to the layered active Ti-containing Ti3C2 and the high surface area of MXene.  相似文献   

20.
Currently, magnesium hydride (MgH2) as a solid-state hydrogen storage material has become the subject of major research owing to its good reversibility, large hydrogen storage capacity (7.6 wt%) and affordability. However, MgH2 has a high decomposition temperature (>400 °C) and slow desorption and absorption kinetics. In this work, BaMnO3 was synthesized using the solid-state method and was used as an additive to overcome the drawbacks of MgH2. Interestingly, after adding 10 wt% of BaMnO3, the initial desorption temperature of MgH2 decreased to 282 °C, which was 138 °C lower than that of pure MgH2 and 61 °C lower than that of milled MgH2. For absorption kinetics, at 250 °C in 2 min, 10 wt% of BaMnO3-doped MgH2 absorbed 5.22 wt% of H2 compared to milled MgH2 (3.48 wt%). Conversely, the desorption kinetics also demonstrated that 10 wt% of BaMnO3-doped MgH2 samples desorbed 5.36 wt% of H2 at 300 °C within 1 h whereas milled MgH2 only released less than 0.32 wt% of H2. The activation energy was lowered by 45 kJ/mol compared to that of MgH2 after the addition of 10 wt% of BaMnO3. Further analyzed by using XRD revealed that the formation of Mg0·9Mn0·1O, Mn3O4 and Ba or Ba-containing enhanced the performance of MgH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号