首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
随着可再生能源发电技术的发展,能够整合分布式发电系统的微网成为满足日益增长的电力需求、节省投资和提高能源利用率的一种有效途径。储能系统作为微网必要的能量缓冲环节,其作用越来越重要。文章概述了电池储能系统的基本特性,分析了电池储能系统的运行及控制原理,并详细阐述了其在微网中的作用。基于蓄电池的储能系统,不仅能起到能量缓冲的作用,还能提供短时供电、缓冲微网中负荷波动、改善微网电能质量,对提高微网的经济效益具有重要作用。  相似文献   

2.
Development of lithium batteries for energy storage and EV applications   总被引:3,自引:0,他引:3  
The results of the Japanese national project of R&D on large-size lithium rechargeable batteries by Lithium Battery Energy Storage Technology Research Association (LIBES), as of fiscal year (FY) 2000 are reviewed. Based on the results of 10 Wh-class cell development in Phase I, the program of Phase II aims at further improvement of the performance of large-size cells and battery modules, and the formulation of roadmaps toward worldwide dissemination of large-size lithium secondary batteries. In addition to the above R&D programs, a new target was presented particularly for the near-term practical application of several kWh-class battery modules in FY 1998.

For the large-size battery modules, two types of 2 and 3 kWh-class battery modules have been developed for stationary device and electric vehicle applications, respectively. The battery modules for both types have achieved most of the targets other than cycle life. Currently, further improvements in the cycle life of the cells themselves are being pursued. For this purpose, the materials for cathodes and anodes, the shapes and structures for batteries and the methods for cell connection are being re-investigated.

The development of middle-size battery systems for mini-size electric vehicles (EVs), as well as for demand-side stationary device applications is under way. These battery systems have been fabricated and their fundamental performance confirmed. They are now being subjected to field tests.  相似文献   


3.
研究锂离子电池储能电站消防预警技术对于储能系统的安全运行具有重要意义。本文通过对电池热失控及热扩散特征识别展开讨论,由于锂离子电池发生热失控时会伴随着可燃气体缓慢释放,如果能够提取电池热失控早期气体参数并对其进行研究分析,可以在此基础上建立电池系统的热失控预警机制。本文采用加热方式和过充方式诱发电池热失控气体提取试验,通过采气试验进行气体成分含量分析,确定了将一氧化碳和温度作为典型的侦测依据来实现锂电池热失控的早期预警。并将这种电池热失控早期预警判断应用到了储能电站消防预警系统中,同时结合多级预警及防护机制和安全联动策略做了深入研究,确定了锂离子电池储能电站消防预警系统的设计架构,从系统部件、联动通信、人员安全3个方面对系统设计做了简要说明,在保证快速有效的检测出电池热失控状态的同时快速联动消防设施,极大提高了储能系统运行的可靠性。  相似文献   

4.
A battery energy storage system (BESS) is usually integrated with a wind farm to smooth out its intermittent power in order to make it more dispatchable. This paper focuses on the development of a scheme to minimize the capacity of BESS in a distributed configuration using model predictive control theory and wind power prediction. The purpose to minimize the BESS capacity is to reduce the overall cost of the system as the capacity of BESS is the main cost driver. A new semi-distributed BESS scheme is proposed and the strategy is analyzed as a way of improving the suppression of the fluctuations in the wind farm power output. The scheme is tested for similar and dissimilar wind power profiles, where the turbines are geographically located closer and further from each other, respectively. These two power profiles are assessed under a variety of hard system constraints for both the proposed and conventional BESS configurations. Based on the simulation results validated with real-world wind farm data, it has been observed that the proposed semi-distributed BESS scheme results in the improved performance as compared with conventional configurations such as aggregated and distributed storage.  相似文献   

5.
选用四种衰退状态,容量保持率(capacity retention ratio,CRR)分别为100%、85%、75%及65%的磷酸铁锂动力电池为研究对象,采用锥形量热仪(CONE)对电池关键组件(含电解液的正极片、负极片及隔膜)的燃烧性和生烟性进行了研究,并运用层次分析法(analytic hierarchy process,AHP)综合评价了不同衰退状态电池组件的火灾危险性。结果表明,随着电池容量保持率的下降,电池组件中负极的有效燃烧热值有所下降,并且电池组件的CO2产率和总生烟量逐渐降低;容量保持率100%~85%的电池组件的归一化危险性指数要明显大于75%~65%的电池组件。  相似文献   

6.
电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一.文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性.  相似文献   

7.
Environmentally friendly and pollution-free hydrogen cell, battery and supercapacitor hybrid power system has taken the attention of scientists in recent years. Several notable advancements in energy storage mechanisms with hybrid power systems have been made during the last decade, influencing innovation, research, and the possible direction for improving energy storage technologies. This paper represents a quantitative analysis of all knowledge carriers with mathematical and statistical methods of hydrogen energy storage to establish a hybrid power system. For selecting the top cited papers in this topic, related articles on energy storage mechanisms for hybrid power systems were searched in the Scopus database under specified predetermined parameters. The selection technique of the most cited paper was based on filtered keywords in the hybrid hydrogen energy storage-based hybrid power system and related research during 2008–2021. About 48% of all articles have been published between 2016 and 2019; 21% will have originated from China; and 29% of the papers have used batteries as a form of energy storage in the application of electric vehicles. Most of the articles contain experimental work (25.11%) followed by simulation analysis (25%) and systematic and nonsystematic review (18.75%). Related publications with the most citations were published in 35 different impactful journals from different publishers and nations. This research found that integrating hydrogen energy storage with battery and supercapacitor to establish a hybrid power system has provided valuable insights into the field's progress and development. Moreover, it is a thriving and expanding subject of study. Bibliometric analysis was used to identify the most significant research publications on the subject of hybrid energy storage, mapping the multidisciplinary character, illustrating nature and trends, and outlining areas for further research. The process of collecting, selecting, and analyzing the most cited articles is expected to contribute to a methodical foundation for future developments of hydrogen energy storage systems and provide viable research paths toward attaining a hybrid power system.  相似文献   

8.
In this paper, a new approach for optimally sizing the storage system employing the battery banks for the suppression of the output power fluctuations generated in the hybrid photovoltaic/wind hybrid energy system. At first, a novel multiple averaging technique has been used to find the smoothing power that has to be supplied by the batteries for the different levels of smoothing of output power. Then the battery energy storage system is optimally sized using particle swarm optimization according to the level of smoothing power requirement, with the constraints of maintaining the battery state of charge and keeping the energy loss within the acceptable limits. Two different case studies have been presented for different locations and different sizes of the hybrid systems in this work. The results of the simulation studies and detailed discussions are presented at the end to portrait the effectiveness of the proposed method for sizing of the battery energy storage system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

10.
Simultaneous operation of different energy generation and transmission infrastructures is a subject that has been considered under the concept of energy hub. This subject is highly regarded in the field of microgrids. One of the basic issues for investors is to properly utilize the energy hub for optimally managing energy carriers, especially in the energy price prediction. In the present paper, a new strategy is introduced for the energy hub in order to achieve the optimal performance of a microgrid (MG) that includes different energy carriers for each day. The objective of this strategy is to minimize the operation cost and consider the environmental issues. The proposed energy hub consists of a combined cooling-heating-power (CCHP) system along with a wind turbine and photovoltaic cells. The studied energy hub system is composed of an ice storage conditioner (ISC) system and an energy storage system (ESS) as the energy storage resource (ESR). One of the goals of the present work is to investigate the effect of solar-powered compressed-air energy storage (SPCAES) on the performance of the energy hub. The proposed strategy takes into account the uncertainty of the energy resources such as the wind and sun for meeting the electric, thermal, and cooling needs in different scenarios. In the present paper, to produce various scenarios, the Latin hypercube sampling (LHS) method is used. Also, the k-means method is used to reduce the number of scenarios. The objective function is solved using the modified grasshopper optimization algorithm (MGOA). According to the modeling results, the ESS can exhibit successful performance in the energy management strategy.  相似文献   

11.
The external electrical characteristics of the lithium battery, PV generator, hydrogen production unit (HPU) and fuel cell in islanded AC microgrid are well analyzed with mathematic models, based on which an energy management system among the abovementioned elements is proposed by using the bus frequency signaling. Specifically, the functions of lithium battery with the variables of the residual capacity and instantaneous working power are well designed to deliver its operation information to other units. The P-f droop control strategy is designed for the PV generator to make it adaptively work off from the maximum power point to the reference power point. The control strategy of HPU can make it work from the maximum efficiency point mode to the allowable maximum power point mode to absorb PV output power as much as possible when the lithium battery is almost getting full charged. Similarly, the fuel cell controller can regulate its power generation from the maximum efficiency point mode to the maximum power point to supply the local load as much as possible when the lithium battery is almost getting full discharged. Finally, the proposed energy management system is verified based on RTLAB experimental platform to show the effectiveness of the proposed coordination control strategy.  相似文献   

12.
随着风力发电大规模入网,其随机性,波动性和间歇性特征对电力系统调频,调峰等有功平衡手段及电压稳定的影响越来越严重.储能系统能够在一定程度上控制风场的输出功率,平抑风电功率波动,改善风机低电压穿越能力,甚至为系统提供辅助服务,是从风场侧提高系统对风电的接纳能力的可行解决方案之一.作者在简要的介绍了风场储能技术应用现状的基础上,重点针对储能型风场内蓄电池储能系统的设计方案,容量优化及控制策略的研究现状及关键问题进行综述及探讨.  相似文献   

13.
This paper deals with load‐frequency control of an interconnected hydro‐thermal system considering battery energy storage (BES) system. A new area control error (ACEN) based on tie‐power deviation, frequency deviation, time error and inadvertent interchange (unscheduled energy transfer) is used for the control of the BES system. Time domain simulations are used to study the performance of the power system and the BES system. Results reveal that BES meets sudden requirements of real power load and is very effective in reducing the peak deviations of frequencies, tie‐power, time errors and inadvertent interchange accumulations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a new procedure for optimal allocation and optimal sizing of a battery energy storage system (BESS) for primary frequency support in an isolated power system. For the BESS allocation, a transmission bus system with larger frequency decline is recognized and the BESS sizing is performed by a constrained optimization strategy based on a new modified metaheuristic, called Developed Harris Hawks Optimization (DHHO). The simulation results of the suggested DHHO are compared with Bat Optimization Algorithm (BOA) and Genetic Algorithm (GA) from the literature to show the method efficiency. The final results showed higher precision with lower required iterations for the suggested DHHO method. Also, the proposed DHHO gives lower investment costs for BESS with lower power and energy requirement toward the other compared methods.  相似文献   

15.
Power losses cause the underutilization of distributed generation (DG) units in addition to the cost increasing in microgrid. Minimizing these losses has been focused in many papers. Using energy storage system (ESS) is a crucial solution for loss reduction. ESS can balance the power exchange in on-peak times where its location and size optimization can improve the microgrid efficiency and reduce the loss cost significantly. Moreover, to ensure the power quality by improving the voltage profile, capacitor bank can be installed optimally on some buses. Optimization of size and location of the capacitor bank can enhance the reactive power that is leading to power loss reduction. In other words, the capacitor bank is applied to compensate the total reactive power and consequently, the current is reduced that results in power loss reduction. In this article, the problem is defined as the optimum location and size of ESS and capacitor bank in the microgrid. Due to the complexity of the problem in many options for selecting the buses to implement these elements (ESS and capacitor bank), robust approach using the particle swarm optimization algorithm and general algebraic modeling system are applied for optimization process. In addition, the uncertainty of renewable DGs such as photovoltaic and wind turbine is modeled by probability density functions and Monte-Carlo is used for selecting more probable cases in optimization processes. The results show the loss cost reduction and improvement in voltage and power profile with less fluctuations and more stability.  相似文献   

16.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号