首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To the safe space operation of cryogenic storage tank, it is significant to study fluid thermal stratification under external heat leaks. In the present paper, a numerical model is established to investigate the thermal performance in a cryogenic liquid hydrogen tank under sloshing excitation. The interface phase change and the external convection heat transfer are considered. To realize fluid sloshing, the dynamic mesh coupled the volume of fluid (VOF) method is used to predict the interface fluctuations. A sinusoidal excitation is implemented via customized user-defined function (UDF) and applied on tank wall. The grid sensitivity study and the experimental validation of the numerical mode are made. It turns out that the present numerical model can be used to simulate the unsteady process in a non-isothermal sloshing tank. Variations of tank pressure, liquid and vapor mass, fluid temperature and thermal stratification are numerically investigated respectively. The results show that the sinusoidal excitation has caused large influence on thermal performance in liquid hydrogen tank. Some valuable conclusions are arrived, which is important to the depth understanding of the non-isothermal performance in a sloshing liquid hydrogen tank and may supply some technique reference for the methods of sloshing suppression.  相似文献   

2.
A numerical calculation model is developed to study the coupled thermal dynamic performance in a cryogenic fuel tank under an intermittent sloshing excitation. Both external heat inputs and the intermittent excitation are realized by User-defined functions. The volume of fluid method is adopted to simulate fluid sloshing, coupled with the mesh motion treatment. Validated against related fluid sloshing experiments, the numerical model was turned out to be acceptable on fluid sloshing prediction. Cooled by subcooled liquid, vapor is always in condensation. The middle vapor pressure test point suffers less from the intermittent excitation and has a linear pressure decrease profile, while the middle liquid pressure test point has fluctuating variations. For vapor and interface temperature monitors, obvious temperature fluctuations appear in the second holding period. While for liquid test points, the temperature profiles experience intensive fluctuations during sloshing periods and stable temperature variation during holding periods. Due to the holding period of external excitation, the tank pressure reduction in intermittent sloshing case is less than that in continuous sloshing case. That is to say the tank pressure decrease rate could be adjusted by proper intermittent excitation. This work is significant to deeply understand fluid sloshing phenomenon under some irregular external excitations in fuel storage tanks.  相似文献   

3.
Large scale using of liquid hydrogen and liquid oxygen on energy engineering, chemical engineering and petrochemical industries, bring a series of non-equilibrium thermal behaviors within fuel storage tanks. Accurate simulation on the thermal behavior in cryogenic fuel storage tanks is therefore a critical issue to improve the operation safety. In the present study, a 2-dimensional numerical model is developed to predict the active pressurization process and fluid thermal stratification in an aerospace fuel storage tank. Both external heat penetration and heat exchange occurring at the interface are accounted for in detail. The volume of fluid method is adopted to predict the thermal physical process with high-temperature gas injected into the tank. The effect of the gas injection mass flow rate on the tank pressure, the interface phase change, and the fluid temperature distribution are investigated respectively. Finally, some valuable conclusions are obtained. The present study may supply some technique references for the design of the pressurization system.  相似文献   

4.
The heat transfer and phase change processes of cryogenic liquid hydrogen (LH2) in the tank have an important influence on the working performance of the liquid hydrogen-liquid oxygen storage and supply system of rockets and spacecrafts. In this study, we use the RANS method coupled with Lee model and VOF (volume of fraction) method to solve Navier-stokes equations. The Lee model is adopted to describe the phase change process of liquid hydrogen, and the VOF method is utilized to calculate free surface by solving the advection equation of volume fraction. The model is used to simulate the heat transfer and phase change processes of the cryogenic liquid hydrogen in the storage tank with the different gravitational accelerations, initial temperature, and liquid fill ratios of liquid hydrogen. Numerical results indicate greater gravitational acceleration enhances buoyancy and convection, enhancing convective heat transfer and evaporation processes in the tank. When the acceleration of gravity increases from 10?2 g0 to 10?5 g0, gaseous hydrogen mass increases from 0.0157 kg to 0.0244 kg at 200s. With the increase of initial liquid hydrogen temperature, the heat required to raise the liquid hydrogen to saturation temperature decreases and causes more liquid hydrogen to evaporate and cools the gas hydrogen temperature. More cryogenic liquid hydrogen (i.e., larger the fill ratio) makes the average fluid temperature in the tank lower. A 12.5% reduction in the fill ratio resulted in a decrease in fluid temperature from 20.35 K to 20.15 K (a reduction of about 0.1%, at 200s).  相似文献   

5.
This paper presents the results of a study of fluid flow and heat transfer of liquid hydrogen in a cryogenic storage tank with a heat pipe and an array of pump-nozzle units. A forced flow is directed onto the evaporator section of the heat pipe to prevent the liquid from boiling off when heat leaks through the tank wall insulation from the surroundings. An axisymmetric computational model was developed for the simulation of convective heat transfer in the system. Steady-state velocity and temperature fields were solved from this model by using the finite element method. Forty five configurations of geometry and velocity were considered. As the nozzle fluid speed increases, the values of the maximum, average, and spatial standard deviation of the temperature field decrease nonlinearly. Parametric analysis indicates that overall thermal performance of the system can be significantly improved by reducing the gap between the nozzle and the heat pipe, while maintaining the same fluid speed exiting the nozzle. It is also indicated that increased inlet tube length of the pump-nozzle unit results in slightly better thermal performance. Increased heat pipe length also improves thermal performance but only for low fluid speed.  相似文献   

6.
《Applied Thermal Engineering》2002,22(15):1705-1716
A numerical model to simulate a storage system composed of spherical capsules filled with PCM placed inside a cylindrical tank fitted with a working fluid circulation system to charge and discharge the storage tank. The simplified transient one-dimensional model is based on dividing the tank into a number of axial layers whose thickness is always equal or larger than a capsule diameter. It is also assumed that the temperature of the working fluid is uniform and equal to the average temperature of the layer. The solidification process inside the spherical capsule is treated by using a conductive one-dimensional phase change model with convective boundary condition on the external surface. The convection present in the liquid phase of the PCM is treated by using an effective heat conduction coefficient in the liquid region of the PCM. The solution of the differential equations is realized by the finite difference approximation and a moving grid inside the spherical capsules. The geometrical and operational parameters of the system are investigated both numerically and experimentally and their influence on the charging and discharging times was investigated.  相似文献   

7.
A ground experiment is established to investigate the pressure control performance of thermodynamic vent system (TVS) with HCFC123. Different influence factors, including tank pressure control bands, circulation volume flow rates, and heat loads, are investigated separately. The variations of tank pressure and fluid temperature are analyzed in different operation process. To compare the performance of TVS with that of direct venting, the tank heat leakage is solved with a quasi‐steady heat transfer model. With the actual penetration heat into tank determined, the performance comparison is made between direct venting and TVS. The results show that the increase rate of tank pressure rises with the heat load during the pressurization process. While the bulk fluid is still subcooled, great tank pressure control and fluid cooling could be obtained by increasing the circulation flow rate in the mixing injection process. With the cold capacity generated by the throttling process, both the vapor and liquid should be well cooled. For the case of No.3 to 4, as the refrigeration capacity of TVS could not eliminate the accumulated heat load timely, the fluid has a temperature increase in the early stage of throttling process. While for the case of No.6, with the fluid being cooled sufficiently, both the vapor and liquid have received great temperature control. Compared with the direct venting, the recovery ratio of venting gas loss generated by TVS ranges from 30% to 145%, which shows the TVS has a large advantage on exhaust saving.  相似文献   

8.
Thermal design analysis of a 1-L cryogenic liquid hydrogen storage tank without vacuum insulation for a small unmanned aerial vehicle was carried out in the present study. To prevent excess boil-off of cryogenic liquid hydrogen, the storage tank consisted of a 1-L inner vessel, an outer vessel, insulation layers and a vapor-cooled shield. For a cryogenic storage tank considered in this study, the appropriate heat inleak was allowed to supply the boil-off gas hydrogen to a proton electrolyte membrane fuel cell as fuel. In an effort to accommodate the hydrogen mass flow rate required by the fuel cell and to minimize the storage tank volume, a thermal analysis for various insulation materials was implemented here and their insulation performances were compared. The present thermal analysis showed that the Aerogel thermal insulations provided outstanding performance at the non-vacuum atmospheric pressure condition. With the Aerogel insulation, the tank volume for storing 1-L liquid hydrogen at 20 K could be designed within a storage tank volume of 7.2 L. In addition, it was noted that the exhaust temperature of boil-off hydrogen gas was mainly affected by the location of a vapor-cooled shield as well as thermal conductivity of insulation materials.  相似文献   

9.
In order to investigate dynamic characteristics of pressure fluctuation and thermal efficiency of a liquid hydrogen (LH2) storage system during depressurization process under microgravity condition, a transient CFD model of LH2 tank is established. Based on the assumption of lumped vapor, a UDF code is developed to solve phase change and heat transfer between liquid phase and vapor one. The thermal efficiency is provided for assessing the performance of different pressure control methods. Results show that raising the injection velocity and decreasing the temperature of the injection liquid can enhance the effect of fluid mixing and shorten the depressurization time. Increasing the pressure lower limit can also improve the efficiency of depressurization process. The model can predict the tendency of pressure changes in the tank, and provide theoretical guide to design LH2 tank and optimize its parameters for space application.  相似文献   

10.
Metal hydride (MH) storage is known as a safe storage method because it does not require complex processes like high pressure or very low temperature. However, it is necessary to use a heat exchanger due to the endothermic and exothermic reactions occurring during the charging and discharging processes of the MH tanks. The performance of the MH is adversely affected by the lack of a heat exchanger or a suitable temperature range and it causes non-stable hydrogen supply to the fuel cell systems. In this study, effect of the tank surface temperature on hydrogen flow and hydrogen consumption performance were investigated for the MH hydrogen storage system of a hydrogen Fuel Cell Electric Vehicle (FCEV). Different temperature values were arranged using an external heat circulator device and a heat exchanger inside the MH tank. The fuel cell (FC) was operated at three different power levels (200 W, 400 W, and 600 W) and its performance was determined depending on the temperature and discharge flow rate of the MH tank. When the heat exchanger temperature (HET) was set to 40 °C, the discharge performance of the MH tank increased compared to lower temperatures. For example, when the FC power was set to 200 W and the HET of the system was at 40 °C, 1600 L hydrogen was supplied to the FC and 2000 Wh electrical energy was obtained. The results show that the amount of hydrogen supplied from the MH tank decreases significantly by increasing the flow rate in the system and rapid temperature changes occur in the MH tank.  相似文献   

11.
The characteristics of cryogenic hydrogen, such as high density and considerable cooling effect, favor the fuel injection, the mixing process and thus the combustion process. In addition to the preferred use of liquid hydrogen due to its range per tank filling and low amount of mass for storage in the vehicle, the cryogenic characteristics of hydrogen provide significant advantages. In addition to engine operation with external mixture formation, considerable success was achieved with internal mixture formation with injection of cryogenic high pressure hydrogen. Only pressurization of cryogenic hydrogen can be accomplished without investing a considerable amount of engine power. Hybrid mixture formation, a proper combination of external and internal mixture formation with suitably pressurized cryogenic hydrogen, is very attractive with respect to power and torque as well as other positive characteristics under steady and intermittent operating conditions.The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R&D work relate to internal mixture formation and improved engine drivability, as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production free from CO2 emissions even from fossil sources such as crude oil or natural gas.  相似文献   

12.
In order to investigate the no-vent filling performance under microgravity, the computational fluid dynamic (CFD) method is introduced to the study, where a model aiming at filling a liquid hydrogen (LH2) receiver tank is especially established. In this model, the solid and fluid regions are considered together to predict the coupled heat transfer process. The phase change effect during the filling process is also taken into account by embedding a pair of mass and heat transfer models into the CFD software FLUENT, one of which involves liquid flash driven by pressure difference between the fluid saturated pressure and the tank pressure, and the other one indicates and calculates the evaporation–condensation process driven by temperature difference between fluid and its saturated state. This CFD model, verified by experimental data, could accurately simulate the no-vent filling process with good flexibility. Moreover, no-vent filling processes under different gravities are comparatively analyzed and the effects of four factors including inlet configuration, inlet liquid temperature, initial wall temperature and inlet flow rate, are discussed, respectively. Main conclusions could be made as follows: 1) Compared to the situations in normal gravity, the no-vent filling in microgravity experiences a more adequate liquid–vapor mix, which results in a more steady pressure response and better filling performance. 2) Inlet configuration seems to have negligible effect on the no-vent filling performance under microgravity since liquid could easily reach the tank wall and then cause a sufficient fluid-wall contact under any inlet condition. 3) Higher initial tank wall temperature may directly cause a higher pressure rise in the beginning, while this effect on the final pressure is not significant. Sufficient precooling and reasonable inlet liquid subcooled degree are suggested to guarantee the reliability and efficiency of the no-vent fill under microgravity.  相似文献   

13.
Fuel cell vehicles have a high potential to reduce both energy consumption and carbon dioxide emissions. However, due to the low density, hydrogen gas limits the amount of hydrogen stored on board. This restriction also prevents wide penetration of fuel cells. Hydrogen storage is the key technology towards the hydrogen society. Currently high-pressure tanks and liquid hydrogen tanks are used for road tests, but both technologies do not meet all the requirements of future fuel cell vehicles. This paper briefly explains the current status of conventional technologies (simple containment) such as high-pressure tank systems and cryogenic storage. Another method, hydrogen-absorbing alloy has been long investigated but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat. We tested a new idea of combining metal hydride and high pressure. It will solve some difficulties and improve performance such as gravimetric density. This paper describes the latest material and system development.  相似文献   

14.
The number of cryogenic storage systems applications is growing rapidly with these systems finding their use in land, sea and space environments. In addition, the evolution of low temperature techniques is commonly linked with efficient utilization of cryogenic liquids that includes all liquids boiling at temperatures below ambient. This evolution suggests the need for continuous development of primary methods to reduce heat leaks of cryogenic storage vessels. Few studies have considered in detail this problem. In this paper, experimental results concerning heat transfer between the vapor and the cryostat necks obtained for liquid nitrogen cryostat are presented and compared with numerical and theoretical results, as well as velocity and temperatures profiles of the gas inside the cryostat.  相似文献   

15.
In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.  相似文献   

16.
Cryo-compressed hydrogen storage has excellent volume and mass hydrogen storage density, which is the most likely way to meet the storage requirements proposed by United States Department of Energy(DOE). This paper contributes to propose and analyze a new cryogenic compressed hydrogen refueling station. The new type of low temperature and high-pressure hydrogenation station system can effectively reduce the problems such as too high liquefaction work when using liquid hydrogen as the gas source, the need to heat and regenerate to release hydrogen, and the damage of thermal stress on the storage tank during the filling process, so as to reduce the release of hydrogen and ensure the non-destructive filling of hydrogen. This paper focuses on the study of precooling process in filling. By establishing a heat transfer model, the dynamic trend of tank temperature with time in the precooling process of low-temperature and high-pressure hydrogen storage tank under constant pressure is studied. Two analysis methods are used to provide theoretical basis for the selection of inlet diameter of hydrogen storage tank. Through comparative analysis of the advantages and disadvantages of the two analysis methods, it is concluded that the analysis method of constant mass flow is more suitable for the selection in practical applications. According to it, the recommended diameter of the storage tank at the initial temperature of 300 K, 200 K and 100 K is selected, which are all 15 mm. It is further proved that the calculation method can meet the different storage tank states of hydrogen fuel cell vehicles when selecting the pipe diameter.  相似文献   

17.
盘管式外融冰槽融冰过程试验研究(I)——取冷特性   总被引:6,自引:0,他引:6  
作者在搭建的50RTH(1RTH=3517W·h)盘管式外融冰实验台上研究了外融冰取冷的动态过程,全面考察了取冷进出口模式、取冷流量、入口温度、初始蓄冰量、搭接等因素对冰槽取冷特性的影响。研究结果表明:1)取冷进出口模式严重影响冰槽取冷特性:不同进出口模式下取冷出口水温的变化过程有很大差异;在取冷的前4/5时间,下进模式取冷的出口温度比上进模式低2 5℃;2)取冷流量对于出口水温的影响小于1℃;3)恒定流量条件下,入口温度的变化会较大程度影响到取冷速率的变化,而对出口水温的影响小于0 5℃;4)初始蓄冰量对于取冷特性影响很小;5)冰柱搭接急剧提高取冷出口温度。  相似文献   

18.
A number of solar domestic hot water systems and many combined space and water heating systems have heat exchangers placed directly in the storage fluid to charge and/or discharge the tank. Operation of the heat exchanger produces a buoyancy-driven flow within the storage fluid. With a view toward controlling the flow field to increase heat transfer, a cylindrical baffle is inserted in a 350 l cylindrical storage tank. The baffle creates a 40 mm annular gap adjacent to the tank wall. A 10 m-long, 0.3 m2 copper coil heat exchanger is placed in the gap. The effects of the baffle on the transient heat transfer, delivered water temperature, heat exchanger effectiveness, and temperature distribution within the storage fluid are presented during discharge of initially thermally stratified and fully mixed storage tanks. The baffle increases the storage side convective heat transfer to the heat exchanger by 20%. This increase is attributed to higher storage fluid velocities across the heat exchanger.  相似文献   

19.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

20.
A study of convective heat transfer in a cryogenic storage vessel is carried out numerically and experimentally. A scaled down model study is performed using water as the model fluid in a rectangular glass tank heated from the sides. The convective flow and the resulting thermal stratification phenomenon in the rectangular tank are studied through flow visualization, temperature measurement, and corresponding numerical simulations. It is found that a vortex-like flow near the top surface leads to a well-mixed region there, below which the fluid is thermally stratified. In addition, in an attempt to simulate the actual conditions, a numerical study is performed on a cylindrical cavity filled with liquid hydrogen (LH2) and heated from the sides. The results are compared with our model study with water, and the qualitative agreement is found to be good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号