首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exploring earth-abundant bifunctional electrocatalysts with highly efficient activity for overall water splitting is exceedingly challenging. Herein, a facile electrodeposit-phosphating-electrodeposit strategy is developed to obtain Mo-doped Co(OH)2 nanofilms coupled with CoP nanosheets loaded on nickel foam (denoted as MoCo(OH)2/CoP/NF). Benefitting from the unique structural merits, MoCo(OH)2/CoP/NF exhibits outstanding electrocatalytic performance both for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The results indicate that the dopant of Mo in the Co(OH)2 can further improve the electrocatalytic performance. To achieve a current density of 10 mA cm?2, only 15 and 287 mV are required for HER and OER in 1 M KOH solution, respectively. When MoCo(OH)2/CoP/NF simultaneously employed as cathode and anode for overall water splitting, it only requires 1.593 and 1.853 V to achieve 10 and 50 mA cm?2, respectively. The electrocatalytic activity of MoCo(OH)2/CoP/NF for overall water splitting even exceed the benchmark electrode couple of Pt/C/NF||RuO2/NF, and MoCo(OH)2/CoP/NF perform excellent durability for overall water splitting. This work opens up new avenues for large-scale commercial production of overall water splitting catalysts due to its low-cost and facile method.  相似文献   

2.
Constructing efficient bifunctional electrocatalysts for both cathode and anode is of great importance for obtaining green hydrogen by water splitting. Herein, sulfuration of hierarchical Mn-doped NiCo LDH heterostructures (Mn–NiCoS2/NF) is constructed as a bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) via a facile hydrothermal-annealing strategy. Mn–NiCoS2/NF shows an overpotential of 310 mV at 50 mA cm−2 for OER and 100 mV at 10 mA cm−2 for HER in 1.0 M KOH. Moreover, only 1.496 V@10 mA cm−2 is required for overall water splitting by using Mn–NiCoS2/NF as catalyst dual electrodes in a two-electrode system. The excellent performance of Mn–NiCoS2/NF should be attributed to the ameliorative energy barriers of adsorption/desorption for HO/H2O through the modification of electronic structure of NiCo basal plane by Mn-doping and the acceleration of water dissociation steps via rich delocalized electron inside sulfur vacancies. The construction of hierarchical Mn–NiCoS2/NF heterostructures provides new prospects and visions into developing efficient-advanced electrocatalysts for overall water splitting.  相似文献   

3.
High-efficiency water splitting catalysts are competitive in energy conversion and clean energy production. Herein, a bifunctional water splitting catalyst CoNiP with cation vacancy defects (CoNiP–V) is constructed through defect engineering. The results show that abundant cation vacancy defects in CoNiP–V are bifunctional active centers in the process of water electrolysis, which enhance the activity of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In 1.0 mol L?1 potassium hydroxide, CoNiP–V requires a pretty low overpotential of 58 mV to reach a geometrical current density of 10 mA cm?2 for HER. To deliver a current density of 100 mA cm?2, only 137 mV and 340 mV of overpotential are needed for HER and OER, respectively. Moreover, the cell with CoNiP–V as both cathode and anode exhibits good stability, which only needs 1.61 V to achieve a current density of 100 mA cm?2, and the cell voltage barely rises 10% after 100 h’ test under 100 mA cm?2. Therefore, CoNiP–V is promising for the development of efficient water splitting catalysts.  相似文献   

4.
The main factors limiting water splitting producing hydrogen production are overpotential, activity and persistence of electrocatalysts. Herein, a novel NixCo1-x(OH)2 coupled with NiFe amorphous compound array growing on nickel foam substrate (expressed as NixCo1-x(OH)2/NiFe-AM) was developed by facile hydrothermal and electrodeposition methods. Significantly, NixCo1-x(OH)2/NiFe-AM with this unique structural exhibits superior activity and stability in the two half reactions of water electrolysis. In addition, when tested in an alkaline electrolyte with a current density of 10 mA cm−2, the overpotentials of HER and OER was 157 mV and 196 mV (60 mA cm−2), respectively. The stability can up to 60 h. These test results show through constructing hierarchical nano-thron architecture enhanced electrocatalytic activity to produce hydrogen and oxygen.  相似文献   

5.
It is of great significance to develop a highly active, durable and inexpensive bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a tungsten-doped nickel phosphide nanosheets based on carbon cloth (W–Ni2P NS/CC) as an efficient bifunctional catalyst through simple hydrothermal and phosphorization for overall water splitting in 1 M KOH. The W–Ni2P NS/CC exhibits excellent electrochemical performance with low overpotentials for HER (η10 = 71 mV, η50 = 160 mV) and OER (η20 = 307 mV, η50 = 382 mV) in 1 M KOH, as well as superior long-term stability. Moreover, W–Ni2P NS/CC as a bifunctional catalyst reveals remarkable activity with a low voltage of 1.55 V to reach a current density of 20 mA cm−2. This work provides a viable bifunctional catalyst for the overall water splitting.  相似文献   

6.
The need for a clean and an environmentally non-degrading sustainable energy resource has grown worldwide due to the huge depletion of other fuel sources, as a result, production of hydrogen by electrochemical water splitting is considered as a potential answer to this pertaining need. However, development of low-cost electrocatalyst as a replacement for Pt and RuO2 for both Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) remains a significant challenge for the production of hydrogen at a larger scale. This study presents the synthesis of non-noble metal-based lanthanum doped copper oxide nanoparticles as a potential bi-functional electrocatalyst for overall water splitting in alkaline electrolyte. The optimized 1% lanthanum (La) doped CuO electrocatalyst exhibits outstanding OER and HER activity in 1.0 M KOH electrolyte posting a potential of 1.552 V vs RHE for OER and −0.173 V vs RHE for HER at a current density of ~10 mAcm−2. Significantly, the functional bi-catalyst exhibits a low cell voltage of 1.6 V to achieve overall water splitting at a current density of 10 mAcm−2 along with long-term stability of 13.5 h for a cell voltage of 2.25 V at a constant current density of 30 mAcm−2 with only 20% initial current lose after 13.5 h. The results demonstrate that the incorporation of the rare-earth element onto CuO nanoparticles has made it a viable high-end non-noble electrocatalyst for overall water splitting.  相似文献   

7.
Designing high-efficiency catalysts for overall water splitting is critical to reduce the cost of hydrogen fuel as a clean and renewable energy source in future society. In this work, a Mo-, P-codoped NiFeSe was successfully synthesized on nickel foam (NF) by one-step electrodeposition. Through the doping strategy, the conductivity can be well promoted, and the production of nanosheets on the catalyst surface and active phases during hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) provided much more active sites, which leaded to efficient HER/OER performances of as-synthesized Mo-, P-codoped NiFeSe catalysts, i.e., a low overpotential of 100 mV/200 mV at current density of 10 mA cm−2 in 1.0 M KOH with stability of 95 h/60 h, respectively. It only required 1.53 V to deliver a current density of 10 mA cm−2 in overall water splitting and maintained outstanding durability for 100 h. This work is beneficial to future design of high efficient and low-cost bifunctional catalysts for overall water splitting.  相似文献   

8.
Exploring cost-effective, high-efficiency and stable electrocatalysts for overall water splitting is greatly desirable and challenging for sustainable energy. Herein, a novel designed Ni activated molybdenum carbide nanoparticle loaded on stereotaxically-constructed graphene (SCG) using two steps facile strategy (hydrothermal and carbonization) as a bifunctional electrocatalyst for overall water splitting. The optimized Ni/Mo2C(1:20)-SCG composites exhibit excellent performance with a low overpotential of 150 mV and 330 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively to obtain a current density of 10 mA cm?2 in 1.0 M KOH solution. In addition, when the optimized Ni/Mo2C(1:20)-SCG composite is used as a bifunctional electrode for overall water splitting, the electrochemical cell required a low cell voltage of 1.68 V at a current density of 10 mA cm?2 and long-term stability of 24 h. More significantly, the synergetic effects between Ni-activated Mo2C nanoparticles and SCG are regarded as a significant contributor to accelerate charge transfer and promote electrocatalytic performance in hybrid electrocatalysts. Our works introduce a novel approach to design advanced bifunctional electrodes for overall water splitting.  相似文献   

9.
To fulfill the growing demand for green H2 fuels, low-cost, efficient, and stable bifunctional electrocatalysts must be developed. Herein, a hierarchical CuO@Cu3P/CF nanowire core-shell heterostructure with transferable active centers was developed for a bifunctional electrocatalyst with high activity. In this system, the transfer of electrochemically active centers between Cu3P and CuO is used to facilitate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Particularly, Cu3P acts as the active center for HER, while the active center shifts to CuO for OER reaction, and Cu3P acts as a co-catalyst to improve the conductivity of the system. Benefit from superhydrophilicity's high electrochemical surface area and synergistic effect of CuO core and Cu3P shell, and CuO@Cu3P/CF shown significant catalytic activity for hydrogen or oxygen evolution, requiring low overpotentials of 144 and 267 mV to achieve a current density of 10 mA cm?2. In addition, the assembled CuO@Cu3P/CF-based electrolyzer exhibit excellent overall water splitting performance with a low operating voltage of 1.75 V at 10 mA cm?2 and a negligible decrease in catalytic activity. This gives encouraging evidence for the utility of our catalysts in application areas.  相似文献   

10.
Electrochemical water electrolyser though an assuring solution for clean hydrogen production, the sluggish kinetics and high cost of existing precious metal electrocatalyst remains a barrier to its effective utilization. Herein, solution combustion route derived perovskite type barium nickelate (BaNiO3) nanoparticles were developed and studied for their bifunctional electrocatalytic properties towards overall water splitting. The unannealed BaNiO3 nanoparticles exhibited the highest OER and HER activity with overpotentials 253 mV and 427 mV respectively to attain 10 mAcm−2 in 1.0 M KOH. Using unannealed BaNiO3 as a bifunctional electrocatalyst in a two-electrode alkaline electrolyser, the cell was able to achieve the benchmark current density at a low cell voltage of 1.82 V. Impressively the setup's electrocatalytic performance improved 4.9% after continuous overall water splitting for 24 h at 30 mAcm−2. Therefore, BaNiO3 nanoparticles can be a low-cost and efficient alternative for noble metal electrocatalysts for clean H2 production.  相似文献   

11.
A Ni–CoSe2/BCT composite composed of biomass-derived carbon tubes and transition metal selenides was successfully constructed and explored as a highly efficient bifunctional electrocatalyst for overall water splitting.
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

12.
Efficient non-noble metal bifunctional electrocatalysts for overall water splitting in pH universal is highly desired in application. Herein, MnO2/graphene composition are applied as efficient electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in pH-universal electrolytes with the help of plasma dc arc method. The couple of MnO2 and graphene highly benefits to the H2O, H+ and OH absorption respectively. The defects and stable Mn3+ contribute to the transfer of electron and charge. The low overpotentials and small Tafel slopes reveal attractive activities of HER and OER. The good electrocatalytic performances are attributed to the synergistic effect and abundant heterogeneous interfaces in MnO2/graphene. These can offer rich electroactive sites and accelerate electron transfer. Thus, it may provide facile route for developing nonprecious electrocatalysts of water splitting.  相似文献   

13.
The development of bifunctional catalysts that can be applied to both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is widely regarded as a key factor in the production of sustainable hydrogen fuel by electrochemical water splitting. In this work, we present a high-performance electrocatalyst based on nickel-cobalt metal-organic frameworks for overall water splitting. The as-obtained catalyst shows low overpotential to reaches the current density of 10 mA cm−2 with 249 mV for OER and 143 mV for HER in alkaline media, respectively. More importantly, when the electrolyzer was assembled with the as-prepared catalyst as anode and cathode simultaneously, it demonstrates excellent activity just applies a potential of 1.68 V to achieve 10 mA cm−2 current density for overall water splitting.  相似文献   

14.
Developing non-noble metal catalysts with excellent electrocatalytic performance and stability is of great significance to hydrogen production by water electrolysis, but there are still problems of low activity, complex preparation and high cost. Herein, we fabricated a novel Ni3S2/Ni(OH)2 dual-functional electrocatalyst by a one-step fast electrodeposition on nickel foam (NF). While maintaining the electrocatalytic performance of Ni3S2, the existence of heterostructure and Ni(OH)2 co-catalyst function greatly improves the overall water splitting performance of Ni3S2/Ni(OH)2–NF. Hence, It shows a low overpotential of 66 mV at 10 mA cm?2 for HER and 249 mV at 20 mA cm?2 for OER. The dual-functional electrocatalyst needs only 1.58 V at 20 mA cm?2 when assembled two-electrode electrolytic cell. Impressively, the electrocatalyst also shows outstanding catalytic stability for about 800 h when 20 and 50 mA cm?2 constant current was applied, respectively which demonstrates a potential electrocatalyst for overall water splitting.  相似文献   

15.
The development of inexpensive electrocatalysts with excellent electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER, respectively) has been challenging. In this study, we synthesized cobalt molybdenum ruthenium oxide with porous, loosely-assembled nanoplate morphology. The CoMoRu0.25Ox/NF electrocatalyst exhibited the highest electrocatalytic activity, requiring overpotentials of 230 and 78 mV for the OER and HER, respectively, to attain a current density of 10 mA cm?2; moreover, its long-term stability was outstanding. The electrocatalyst required a cell voltage of only 1.51 V for overall water splitting in an alkaline medium, which was lower than that required by many CoMo-based catalysts.  相似文献   

16.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

17.
The construction of high-efficiency bifunctional electrocatalysts is still a main challenge for hydrogen production from water splitting, in which comprehensive structure regulation plays a key role for synergistically boosting the intrinsic activity and charge collection. Here, we used a two-step hydrothermal method for construction of an interjaculated CoSe/Ni3Se4 heterostructure from NiCo LDH nanosheets grown on stainless steel (SS) meshes as bifunctional electrocatalysts for overall water splitting. The SS meshes containing Fe and Ni act as an excellent 3D scaffold for catalyst growth and charge collection. The SS@CoSe/Ni3Se4 composite exhibits outstanding electrocatalytic performances with low overpotentials of 97 mV for hydrogen evolution and 230 mV for oxygen evolution to reach a current density of 10 mA cm−2, respectively. Moreover, by using SS@CoSe/Ni3Se4 as both the cathode and anode, the assembled electrolyze only required 1.55 V to reach 10 mA cm−2 for overall water splitting. The outstanding performance of SS@CoSe/Ni3Se4 benefits from the synergy between excellent charge collection capability of SS meshes and the abundant active sites at the CoSe/Ni3Se4 heterointerface formed with the in-situ conversion of NiCo LDH nanosheets. Electrochemical active surface area and impedance spectrum indicate that the CoSe/Ni3Se4 loaded on SS has the most abundant electrochemically active sites and the smallest electrochemical resistance, thereby exposing more active sites and enhancing the charge transfer to promote the catalytic activity. By integrating the delicate nanoscale heterostructure engineering with the microscale SS mesh scaffold, our work provides a new perspective for the preparation of high-performance and cheap electrocatalysts that are easy to be integrated with industrial applications.  相似文献   

18.
Exploring high-performance non-noble metal electrocatalysts is pivotal for eco-friendly hydrogen energy applications. Herein, featuring simultaneous Chromium doping and in-grown heterointerface engineering, the Cr doping Ni3FeN/Ni heterostructure supported on N-doped graphene tubes (denoted as Cr–Ni3FeN/Ni@N-GTs) was successfully constructed, which exhibits the superior bifunctional electrocatalytic performances (88 mV and 262 mV at 10 mA cm−2 for HER and OER, respectively). Furthermore, an alkaline electrolyzer, employing Ni3FeN/Ni@N-GTs as both the cathode and the anode, requires a low cell voltage of 1.57 V at 10 mA⋅cm−2. Cr doping not only modulates the electronic structure of host Ni and Fe but also synchronously induces nitrogen vacancies, leading to a higher number of active sites; the in-grown heterointerface Cr–Ni3FeN/Ni induces the charge redistribution by spontaneous electron transfer across the heterointerface, enhancing the intrinsic catalytic activity; the N-GTs skeleton with excellent electrical conductivity improves the electron transport and mass transfer. The synergy of the above merits endows the designed Cr–Ni3FeN/Ni@ N-GTs with outstanding electrocatalytic properties for alkaline overall water splitting.  相似文献   

19.
A novel 2D/2D heterojunction (CuTHQ/NG) has been prepared by in situ growth of the 2D CuTHQ MOF on defective N-doped graphene (NG), and its photocatalytic activity for overall water splitting studied in detail. CuTHQ/NG heterojunction has demonstrated better photocatalytic activity (480 μmol/g) than the individual components (257 and 65 μmol/g for CuTHQ and NG, respectively) for H2 evolution. Furthermore, unlike the individual components, the as-prepared 2D/2D CuTHQ/NG heterojunction promotes overall water splitting under simulated sunlight (164 μmol of H2/g and 80 μmol of O2/g). We have also studied the photo-induced charge separation and recombination reactions. Photocurrent measurements and emission quenching experiments have confirmed improved charge separation in the CuTHQ/NG heterojunction. Moreover, the charge recombination kinetics have been investigated with transient absorption spectroscopy. Electron/hole recombination in the heterojunction has been determined more than one order of magnitude slower (8.9 μs) than the mechanical mixture of CuTHQ and NG (0.35 μs). Finally, the photochemical stability of the 2D/2D heterojunction has been investigated performing a long-term (96 h) experiment, demonstrating near linear H2 evolution along the irradiation time.  相似文献   

20.
Iron-based metal phosphides (IMPs) have emerged as a new type of bifunctional electrocatalyst for overall water splitting with high efficiency and good stability. We report IMPs nanoparticles' fabrication with different metal element compositions anchored on phosphorus-doped vertically aligned graphene arrays (IMPs/P-VG), which is successfully achieved by tuning the different phosphates in the electroless plating solution. Compared with other metal ratios of electrocatalysts, Fe0.5Co1.5Ni0.5P/P-VG exhibits the best apparent and intrinsic activity in 1 M KOH, and it also shows good stability up to 12 h without any significant degradation. Moreover, benefiting the unique hierarchical vertical arrays nanostructure of the substrate and the trimetallic phosphides' synergetic effects, the Faraday efficiency of the electrolytic cell based on Fe0.5Co1.5Ni0.5P/P-VG double electrode for the overall water-splitting is up to 90%. This study suggests that proper tuning of the composition of metal elements in IMPs and integrated on compatible substrates can effectively improve the electrocatalytic activity of IMPs for water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号