首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of hydrogen molecules on monolayer graphene is investigated using molecular dynamics simulations (MDS). Interatomic interactions of the graphene layer are described using the well-known AIREBO potential, while the interactions between graphene and hydrogen molecule are described using Lennard-Jones potential. In particular, the effect of strain and different point defects on the hydrogen storage capability of graphene is studied. The strained graphene layer is found to be more active for hydrogen and show 6.28 wt% of H2 storage at 0.1 strain at 77 K temperature and 10 bar pressure. We also studied the effect of temperature and pressure on the adsorption energy and gravimetric density of H2 on graphene. We considered different point defects in the graphene layer like monovacancy (MV), Stone Wales (SW), 5-8-5 double vacancy (DV), 555–777 DV, and 5555-6-7777 DV which usually occur during the synthesis of graphene. At 100 bar pressure, graphene with 1% concentration of MV defects leads to 9.3 wt% and 2.208 wt% of H2 storage at 77 K and 300 K, respectively, which is about 42% higher than the adsorption capacity of pristine graphene. Impact of defects on the critical stress and strain of defected graphene layers is also studied.  相似文献   

2.
Physisorption of molecular hydrogen on pristine single-walled carbon nanotube and three types of topologically defected nanotubes (Stone-Wales, vacancy and interstitial defects) at different temperatures 77, 300 and 600 K has been investigated via molecular dynamics simulation. The interatomic interactions (covalent bonds) between the carbon atoms within the nanotube wall were modeled by the well-known bond order Tersoff potential. The applied intermolecular forces are modeled using the modified form of the well-known Lennard-Jones potential based on the nanotube curvature. The adsorption/desorption cycle was followed by increasing the operating temperature under the pressure of 1 bar. The simulation results of exposing 6.5%wt of H2 on defected and pristine (3,3) nanotubes reveal that the highest and lowest adsorption energies and storage capacities are obtained from the nanotubes with interstitial and vacancy defects, respectively.  相似文献   

3.
Grand canonical Monte Carlo (GCMC) simulation combined with ab initio quantum mechanics calculations were employed to study hydrogen storage in homogeneous armchair open-ended single walled silicon nanotubes (SWSiNTs), single walled carbon nanotubes (SWCNTs), and single walled silicon carbide nanotubes (SWSiCNTs) in triangular arrays. Two different groups of nanotubes were studied: the first were (12,12) SiNTs, (19,19) CNTs, and (15,15) SiCNTs and the second were (7,7) SiNTs, (11,11) CNTs, and (9,9) SiCNTs with the diameters of ∼26 and ∼15 Å for the first and second groups, respectively. The simulations were carried out for different thermodynamic states. The potential energy functions (PEFs) were calculated using ab initio quantum mechanics and then fitted with (12,6) Lennard-Jones (LJ) potential model as a bridge between first principles calculations and GCMC simulations. The absolute, excess, and delivery adsorption isotherms of hydrogen were calculated for two groups of nanotubes. The isosteric heat of adsorption and the radial distribution functions (RDFs) for the adsorbed molecules on different nanotubes were also computed. Different isotherms were fitted with the simulation adsorption data and the model parameters were correlated. According to the results, the hydrogen uptake values in (19,19) CNT array exceeded the US DOE (Department of Energy) target of 6.0 wt% (FY 2010) at 77 K and 1.0 and 2.0 MPa for absolute and excess uptakes, respectively. The results also show that SiNTs and SiCNTs are not more useful materials compared with corresponding CNTs for hydrogen storage.  相似文献   

4.
Physisorption of targeted amount of hydrogen within carbonaceous material is a formidable task. Even though at 80 K adsorption is satisfactory but at 298 K storing desirable amount of hydrogen is difficult. Here we report grand canonical monte carlo simulation of hydrogen adsorption within two different cylindrical pores in the temperature range 60–298 K and in the pressure range 1–500 bar. In one we construct a cylindrical pore (CP) of ≈2.0 nm diameter by removing carbon atoms from the center of stacked graphene sheets. In the other single walled carbon nanotube (SWCNT) of similar diameter is used for the adsorption. In all of our simulations intermolecular hydrogen interactions are modeled using the classical Silvera-Goldman potential, which contains both Lennard-Jones and electrostatic sites. Total amount of adsorbed hydrogen is always greater in SWCNT (adsorbed both inside and outside the wall) than in CPs, however amount of hydrogen adsorbed inside SWCNT only is always smaller than that inside CP. Surface defects created during removal of carbon atoms in CP results in almost 2 wt% increase in uptake compared to SWCNT.  相似文献   

5.
We identified several parameters that correlate with the hydrogen physisorption energy and physicochemical properties of heteronuclear bonding in single-walled carbon nanotubes (SWCNT) and graphene. These parameters were used to find the most promising heteronuclear doping agents for SWCNTs and graphene for enhanced hydrogen storage capacity. Si-doping was showed to increase the amount of physisorbed hydrogen on such surfaces. Grand Canonical Ensemble Monte Carlo (GCMC) simulations showed that the hydrogen storage capacity of 10 at% Si-doped SWCNT (Si-CNT10) could reach a maximum of 2.5 wt%, almost twice the storage capacity of undoped SWCNTs, which were showed to reach a maximum capacity of 1.4 wt% at room temperature. To achieve this capacity, debundling effects of the uneven surfaces of Si-doped SWCNTs were found to be necessary. Similarly, 10 at% Si-doping on graphene (Si-GR10) was showed to increase the hydrogen storage capacity from 0.8 to 2.4 wt%.  相似文献   

6.
Molecular configurations are some of the important factors that strongly affect the hydrogen adsorption in carbon nanotubes (CNTs). A Quantum Molecular dynamics simulations are performed to study the adsorption isotherm of torsional double-walled carbon nanotubes (DWCNTs) filled with hydrogen molecules. The considered key factors that affect the hydrogen storage responses of the DWCNTs are the adsorption energy and the surface tension effect. Our simulated results show that 2-sided effect is observed and kinetic diameter of H2 molecules is shortened approximately 4.11% under helical confinement. The results further reveal that the amounts of hydrogen storage wt% are computed at 77 K and found to be 1.77 wt% and 3.92 wt% for pristine and twisted-DWCNTs, respectively. Finally, it is shown that the adsorption heat, which reflects surface property, is twisted dependent.  相似文献   

7.
Floating catalyst chemical vapor deposition method was used for the synthesis of boron doped carbon nanotubes (BCNTs) using ethanol, triethyl borate and ferrocene as carbon source, boron source and catalyst precursor, respectively. The synthesized BCNTs were characterized by transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The hydrogen adsorption activity was studied for BCNTs along with undoped single walled and multi walled carbon nanotubes. Significant enhancement in the hydrogen storage value was found in doped CNTs as compared to the other undoped CNTs. Hydrogen storage for BCNTs was found to be 2.5 wt% at 10 bar and 77 K. In-situ doped BCNTs gives higher hydrogen adsorption as compared to ex-situ doped BCNTs. The Langmuir adsorption isotherm was found to be suitable for describing the adsorption isotherm as compared with Freundlich isotherm. Maximum adsorption capacity was about 9.8 wt% at 77 K. Pseudo second order kinetics was followed by BCNTs for hydrogen adsorption.  相似文献   

8.
Stability and electronic properties of small Pdn clusters (n = 1–5), adsorbed on different types of double vacancy (DV) defect graphene sheets are thoroughly investigated by both density functional theory (DFT) and molecular dynamics (MD). Defect bridge sites of DV(555-777) defect graphene sheet are identified to be the most favorable for Pd4 cluster adsorption. MD calculations, performed using a canonical ensemble, showed this system to be highly stable up to 800 K. Much better hybridization between C 2p and Pd 4d and 5s orbitals near Fermi level as well as higher charge transfer to graphene sheet was found to be the governing reason for enhanced stability of Pd4 cluster on DV(555-777) defect site. Comparative analysis of H2 storage on Pd4 cluster adsorbed pristine and DV(555-777) defect graphene sheet showed, while adsorption energy/H2 molecule for both cases lie well within desirable energy window for a hydrogen storage media, the later is much more efficient energetically as distorted in plane sp2 hybridization reduces the saturations of C–C bonds in the defect regions, making more electron density available for bonding; which leads to higher net charge gain of Pd4 cluster and higher charge sharing with H2 molecule.  相似文献   

9.
In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activation approach in which the obtained activated carbon fibres (ACF) are compared with those from laboratory-scale activation. The prepared samples cover a large range of porosities, which is found to govern their ability for hydrogen adsorption. The hydrogen uptake capacities of all the prepared samples have been analysed both in volumetric and in gravimetric bases. Thus, maximum adsorption capacities of around 5 wt% are obtained at 77 K, and 1.1 wt% at room temperature, respectively. The packing densities of the materials have been measured, turning out to play an important role in order to estimate the total storage capacity of a tank volume. Maximum values of 17.4 g l−1 at 298 K, and 38.6 g l−1 at 77 K were obtained.  相似文献   

10.
Two-dimensional graphene material is doped with Ni-B nanoalloys via a chemical reduction method, and shows that the optimal graphene doped with Ni (0.14 wt.%) and B (0.63 wt.%) has a hydrogen capacity of 2.81 wt.% at 77 K and 106 kPa, which is more than twice of that of the pristine graphene. The measured adsorption isotherms of hydrogen and nitrogen suggest that the Ni-B nanoalloys function as catalytic centers to induce the dissociative adsorption of hydrogen (spillover) on the graphene. The Ni-B nanoalloys without using any noble metal may be a promising catalyst for hydrogen storage application.  相似文献   

11.
Porous materials, especially porous carbon materials, have the most potential as hydrogen adsorbents. In this research, a series of novel rectangular polyaniline tubes (RPTs) are synthesized using hollow carbon nanosphere (HCNS) templates. By changing mass ratios of ammonium persulfate to HCNSs, the sizes of RPTs can be controlled. Chemical activation with KOH gives rise to a large specific surface area (SSA), ranging from 1680 to 2415 m2 g−1, and big pore volumes that range from 1.274 to 1.550 cm3g−1. These observations demonstrate that activated rectangular polyaniline-based carbon tubes ARP-CTs are promising hydrogen adsorbents. Hydrogen uptake measurements show that the highest hydrogen adsorption reaches 5.2 wt% at 5 MPa/77 K and 0.62 wt% at 7.5 MPa/293 K respectively. Notably, the large pore volume can contribute 2.8 wt% to the total hydrogen storage which has approached 8.0 wt% at 5 MPa/77 K.  相似文献   

12.
Hydrogen storage in single-walled carbon nanotubes containing the Stone-Wales defects and doped with metal atoms (titanium and beryllium) has been studied using molecular dynamics simulations and density functional theory calculations. Although, Be is known to be toxic at high temperatures, Be-doped SWCNT shows a promising potential to exceed the DOE target at moderate temperatures and pressures. One of the major advantages of doping Be is its lower atomic weight, which increases the gravimetric storage capacity compared to SWCNTs doped with heavy-wight Ti atoms. In addition, the binding energy of Be is higher than that of Ti, which enhances the capture of hydrogen molecules. The gravimetric and volumetric storage capacities depend not only on the dopant atom but also on the location of doping. SWCNTs in which Be is doped on the octagonal ring of the Stone-Wales defects exhibits higher storage capacity than Be doped on defect-free SWCNTs. At room temperature (298 K), the storage capacity of Be-doped SWCNT containing the Stone-Wales defect exceeds the DOE target of 5.5 wt% (gravimetric) and 40 g H2/L (volumetric) at a pressure of 267 atm, which is significantly lower than that used in high pressure vessels.  相似文献   

13.
Hydrogen uptake of pristine multi-walled carbon nanotubes is increased more than three-fold at 298 K and hydrogen pressure of 4.0 MPa, upon addition of hydrogen spillover catalyst manganese oxide, from 0.26 to 0.94 wt%. Simple and convenient in situ reduction method is used to prepare Mn-oxide/MWCNTs composite. XRD, FESEM, and TEM demonstrates nanostructural characterization of pristine MWCNTs and composite. TGA analysis of Mn-oxide/MWCNTs composites showed a single monotonous fall related to MWCNTs gasification. Enhancement of hydrogen storage capacity of composite is attributed to spillover mechanism owing to decoration of Mn-oxide nanoparticles on outer surface of MWCNTs. Hydrogen uptake follows monotonous dependence on hydrogen pressure. Oxide-MWCNTs composite not only shows high hydrogen storage capacity as compared to pristine, but also exhibit significant cyclic stability upon successive adsorption–desorption cycles.  相似文献   

14.
The hydrogen adsorption capacity of dual-Ti-doped (7, 7) single-walled carbon nanotube (Ti-SWCNTs) has been studied by the first principles calculations. Ti atoms show different characters at different locations due to local doping environment and patterns. The dual-Ti-doped SWCNTs can stably adsorb up to six H2 molecules through Kubas interaction at the Ti2 active center. The intrinsic curvature and the different doping pattern of Ti-SWCNTs induce charge discrepancy between these two Ti atoms, and result in different hydrogen adsorption capacity. Particularly, eight H2 molecules can be adsorbed on both sides of the dual-Ti decorated SWCNT with ideal adsorption energy of 0.198 eV/H2, and the physisorption H2 on the inside Ti atom has desirable adsorption energy of 0.107 eV/H2, ideal for efficient reversible storage of hydrogen. The synergistic effect of Ti atoms with different doping patterns enhances the hydrogen adsorption capacity 4.5H2s/Ti of the Ti-doped SWCNT (VIII), and this awaits experimental trial.  相似文献   

15.
Boron-doped carbon nanotubes (BCNTs) with varying B content (0–8 at%) were prepared by thermo-catalytic decomposition of ethanol in presence of boric acid at 1073 K. It was observed that hydrogen adsorption capacity improved to a critical B content of 3.86 at% and then decreased. Maximum hydrogen adsorption was found to be 0.497 wt% at 273 K and 16 bar with 3.86 at% of boron doping in CNTs. With the help of transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, it was found that in addition to dopant concentration, dopant bonding with carbon structures, crystallinity and defects play pivotal roles in determining the extent of hydrogen adsorption by BCNTs. The thermogravimetric studies revealed the oxidation stability of the BCNTs. The hydrogen adsorption kinetics was found to follow the pseudo-second-order model. The rate constant value was minimum for the BCNT with the highest hydrogen storage capacity.  相似文献   

16.
A LiAlH4/single walled carbon nanotube (SWCNT) composite system was prepared by mechanical milling and its hydrogen storage properties investigated. The SWCNT - metallic particle addition resulted in both a decreased decomposition temperature and enhanced desorption kinetics compared to pure LiAlH4. The decomposition temperature of the 5 wt.% SWCNT-added LiAlH4 sample was reduced to 80 °C and 130 °C for the first and second stage, respectively, compared with 150 °C and 180 °C for as-received LiAlH4. In terms of the desorption kinetics, the 5 wt.% SWCNT-added LiAlH4 sample released about 4.0 wt.% hydrogen at 90 °C after 40 min dehydrogenation, while the as-milled LiAlH4 sample released less than 0.3 wt.% hydrogen for the same temperature and time. Differential scanning calorimetry measurements indicate that enthalpies of decomposition in LiAlH4 decrease with added SWCNTs. The apparent activation energy for hydrogen desorption was decreased from 116 kJ/mol for as-received LiAlH4 to 61 kJ/mol by the addition of 5 wt.% SWCNTs. It is believed that the significant improvement in dehydrogenation behaviour of SWCNT-added LiAlH4 is due to the combined influence of the SWCNT structure itself and the catalytic role of the metallic particles contained in the SWCNTs. In addition, the different effects of the SWCNTs and the metallic catalysts contained in the SWCNTs were also investigated, and the possible mechanism is discussed.  相似文献   

17.
Hydrogen storage capacity of various carbon materials, including activated carbon (AC), single-walled carbon nanohorn, single-walled carbon nanotubes, and graphitic carbon nanofibers, was investigated at 303 and 77 K, respectively. The results showed that hydrogen storage capacity of carbon materials was less than 1 wt% at 303 K, and a super activated carbon, Maxsorb, had the highest capacity (0.67 wt%). By lowering adsorption temperature to 77 K, hydrogen storage capacity of carbon materials increased significantly and Maxsorb could store a large amount of hydrogen (5.7 wt%) at a relatively low pressure of 3 MPa. Hydrogen storage capacity of carbon materials was proportional to their specific surface area and the volume of micropores, and the narrow micropores was preferred to adsorption of hydrogen, indicating that all carbon materials adsorbed hydrogen gas through physical adsorption on the surface.  相似文献   

18.
Plumbene, a recently discovered 2D material, has been examined for hydrogen storage. First principles calculations have been performed to investigate the hydrogen adsorption on pristine plumbene monolayer. The hydrogen molecule prefers to adsorb on three adsorption sites, i.e. H (hollow-site), T (top-site) and B (bond-site), of plumbene surface with desired adsorption energy. The adsorption energy is highest (−149 meV) at hollow site and lowest (−104 meV) at bond site. One side hydrogen decorated plumbene exhibit 3.37 wt% Hydrogen Gravimetric Density (HGD). Whereas 6.74 wt% (HGD), with the average adsorption energy of −117 meV/H2, has been achieved in both side hydrogen decorated plumbene monolayer. Applied electric field can effectively controls the adsorption and desorption processes. Positive electric field makes the adsorption strong while the negative electric field results in weakening of hydrogen adsorption. It means electric field act as a switch to store and release hydrogen with good control and usage selectivity. Present study reveals that the plumbene is a strong candidate for hydrogen storage to meet the desired target of HGD suggested by U.S. Department of Energy by the year 2021.  相似文献   

19.
Hydrogen adsorption with micro-structure deformation under ultra-high pressure in nanoporous carbon (NPC) has been studied. This study proposed a new ultra-high pressurization (UHP) method. It produces a gas atmosphere of over 100 MPa utilizing the cold isostatic pressing (CIP) device. NPC materials were pressurized under a hydrogen atmosphere at 100–400 MPa. NPC fabricated from rice husk via KOH activation possesses a high surface area achieving 3500 cm2/g and a micropore volume of over 2.0 cm3/g. The maximum hydrogen uptake reached 3.2 wt% (77 K, 0.1 MPa). Then, NPC materials were treated with 100–400 MPa pressurization in the hydrogen atmosphere. NPC showed a preferred deformation behavior of 1.1–1.2 nm after pressurization, which is the optimum size for hydrogen adsorption. Additionally, the maximum micropore volume increased to 2.51 cm3/g. However, the hydrogen uptake shows a slight decrease to 3.0 wt%. The isosteric heat of adsorption maintained at 8.0–10.3 kJ/mol.  相似文献   

20.
Water splitting on single Fe atom catalyst anchored on defective graphene surfaces by using first-principles density functional theory. The structure and electronic features of isolated Fe atom anchored on three graphene surfaces with single vacancy (SV), double vacancy (DV) and Stone-Wales structure (SW) defect were systematically explored. The three structures prove to be high activity and high stability on catalytic. The adsorption and the energy barrier of water splitting as well as hydrogen adsorption free energy ΔGH1 on single-atom Fe were also studied. The sequence of promoted splitting activity is found to be Fe@SW > Fe@DV > Fe@SV. Furthermore, by hydrogen adsorption free energy ΔGH1 analysis, we predict that the HER catalytic activity of graphene nanosheet can be improved by anchoring Fe atom on SV and DV structures, which are comparable to or even better than noble metals. It is found that the catalytic activity of water splitting and HER can be changed with the shift in d-band center with respect to Fermi-level. Detailed investigations on electronic structure of Fe@graphene catalytic systems disclose an obvious orbital hybridization coupling and charge transfer between atom Fe on carbon surfaces and water molecule. These results provide us with new insight into design of high performer and low-cost catalysts and may inspire potential applications in the fields of clean and renewable energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号