首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays the trend of increasing the generation units based on renewable energy sources in the electric power system can be observed. Obviously, this is due to the intensifying level of consumer load and demand for electricity. However, renewable generation is characterized by intermittent energy production, which can cause and potential imbalance between generation and demand, especially during off-peak periods. Therefore, in order to ensure a reliable power supply to consumers, it is necessary to use a maneuverable reserve of capacity, such as energy storage systems, in conjunction with the renewable energy source unit. Over the past 10 years, the energy storage market has grown by almost 50%: the installed capacity of energy storage system in the world is about 5 GW. Analysis of the literature on the subject determines the need to study the impact of these devices on the parameters of electric power systems and one of the primary tasks is to determine the optimal location and capacity of energy storage system in the power system. This paper presents the result of solving the task of determining the optimal parameters of a hydrogen energy storage system using the particle swarm optimization method for example a test scheme radial distribution system – 33 bus IEEE. The choice of the type of energy storage is based on such advantages of a hydrogen energy storage system as environmental friendliness, high energy capacity and the ability to store electricity for a long period of time. In addition, compared to lithium-ion batteries, hydrogen energy storage systems have a long life time of about 25 years, during this period of time there is no degradation and significant deterioration of its properties. All these advantages of hydrogen as an energy carrier allow to take into account not only the criterion of total value of active power losses and its maximum reduction respectively, but the possibility and economic efficiency of partial use of the stored hydrogen for other needs when determining the optimal scenario of their operation in the process of discharge.  相似文献   

2.
The global climate and environmental crisis dictate the need for the development and implementation of environmentally friendly and efficient technical solutions, for example, generation based on renewable energy sources. However, the annually increasing demand for electricity (according to the forecasts of the U.S. Energy Information Administration, the amount of energy consumed for the period 2006–2030 will increase by 44 %) cannot be fully provided by alternative energy. The main reason is not so much the high cost of these technologies, like unstable power generation, which determines the need for an additional reserve of regulated power.The solution to this problem can be the combined use of generation based on renewable energy sources with energy storage units of large capacity. Currently, a promising direction is the use of excess electricity for the production of hydrogen and its further accumulation in hydrogen storage. In this case an additional energy can be generated using industrial fuel cells (electrochemical generators) to compensate for the power shortage.At the same time, the distinctive advantage of hydrogen energy storage systems lies in the ability to accumulate a large amount of energy for long periods of time. This fact makes it possible to increase the reliability of the functioning of the electric power system, to provide power supply with a sufficiently long interruption (in case of faults) or allocation for isolated operation.With an increase in the unit capacity and the share of renewable generation in the total installed capacity, researches that aimed to systematic analysis of the impact of the implemented generation unit and the energy storage system on the parameters of the mode of the electric power system become more relevant. There are a number of tasks can be noted related to determining the optimal location and size of the generation unit and energy storage systems being implemented in terms of reducing power losses and maintaining an appropriate voltage level in the nodes of the electric power system. In this article, a variant of solving the optimization task for a typical 15-bus IEEE scheme is presented by means of software calculation using the bubble sorting method. To achieve this goal, the following tasks were solved: the objective function, which indicates the optimal location and size of the generation unit, and constraints, for example, the available deviation of voltage level, were formed; the software implementation of the algorithm for calculating power flows and power losses using the bubble sorting method was carried out. The results of the work of the program code for two scenarios are presented: for instance, installation of one renewable generation unit with a different range of possible capacities, and are compared with the data obtained in the MATLAB/Simulink software package.  相似文献   

3.
The involvement of green hydrogen in energy transformation is getting global attention. This assessment examines the hydrogen production and its utilization potential in one of the hydropower-rich regions, Nepal under various demand growth and technology intervention scenarios by developing a power grid model of 52 nodes and 68 transmission lines operating at an hourly time-step. The model incorporates a grid-connected hydrogen storage system as well as charging stations for electric and hydrogen vehicles. The least-costly pathways for power grid expansion at the nodal and provincial levels are identified through optimization. The results show that 32 GW of installed capacity is required to meet domestic electricity demand and 14 GW more hydropower should be exploited to completely decarbonize the transport sector by 2050. For maintaining 50% shares of hydrogen vehicle in the transport sector and meet government electricity export targets, Nepal requires 5.7 GW, 12 GW and 23 GW of the additional electrolyzer, hydrogen storage tanks and storage-based hydropower capacities respectively. For a given electricity demand, introducing hydrogen systems can reduce the capacity requirements of hydro storage by storing surplus power generated from pondage run-of-the-river and run-of-the-river hydropower during the rainy season and using it in the dry season.  相似文献   

4.
A low‐carbon electricity supply for Australia was simulated, and the installed capacity of the electrical grid was optimized by shifting the electricity demand of residential electric water heaters (EWHs). The load‐shifting potential of Australia was estimated for each hour of the simulation period using a nationwide aggregate EWH load model on a 90 × 110 raster grid. The electricity demand of water heaters was shifted from periods of low renewable resource and high demand to periods of high renewable resource and low demand, enabling us to effectively reduce the installed capacity requirements of a 100%‐renewable electricity grid. It was found that by shifting the EWH load by just 1 hour, the electricity demand of Australia could be met using purely renewable electricity at an installed capacity of 145 GW with a capacity factor of 30%, an electricity spillage of 20%, and a generation cost of 15.2 ¢/kWh. A breakdown of the primary energy sources used in our scenario is as follows: 43% wind, 29% concentrated solar thermal power, and 20% utility photovoltaic. Sensitivity analysis suggested that further reduction in installed capacity is possible by increasing the load‐shifting duration as well as the volume and insulation level of the EWH tank.  相似文献   

5.
The curbing of greenhouse gases (GHG) is an important issue on the international political agenda. The substitution of fossil fuels by renewable energy sources is an often-advocated mitigation strategy. Wind energy is a potential renewable energy source. However, wind energy is not reliable since its electricity production depends on variable weather conditions. High wind energy penetration rates lead to losses due to power plant operation adjustments to wind energy. This research identifies the potential energetic benefits of integrated hydrogen production in electricity systems with high wind energy penetration. This research concludes that the use of system losses for hydrogen production via electrolysis is beneficial in situations with ca. 8 GW or more wind energy capacity in the Netherlands. The 2020 Dutch policy goal of 6 GW will not benefit from hydrogen production in terms of systems efficiency. An ancillary beneficial effect of coupling hydrogen production with wind energy is to relieve the high-voltage grid.  相似文献   

6.
Many island power systems are powered by diesel generators or long underwater cables, which result in greater operating costs or losses than stand-alone systems. It is therefore desirable to integrate renewable energy (RE) sources into these mini grids.  相似文献   

7.
Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined.  相似文献   

8.
The efforts to reduce the impact of the electric power generation from fossil fuels have been conducted to increase renewable energy sources and the trend to implement a decentralised scheme by distributed generation systems. However, small power plants' use does not contribute to the frequency regulation in the electrical power system due to the lack of the inertia and damping properties of synchronous generators used conventionally. This condition can produce unpredictable and unstable operational conditions of multi-area power systems. Hence, this paper aims to assess a voltage source converter (VSC) controlled by a synchronverter to help in frequency regulation in power networks that contain an actual number of renewable sources connected. The contribution lies in using the synchronverter as a control element capable of interacting correctly in a power network with a distributed generation system integrated with synchronous generators and renewable energy sources. Under this scenario, a hardware-in-the-loop (HIL) strategy of a photovoltaic-fuel cell-battery power generation system demonstrates that the VSC controlled by a synchronverter can react adequately under frequency deviations. A three power plants' performance, a conventional one and two photovoltaic (P.V.) farms handled by a synchronverter tied through a transmission link, is studied to demonstrate that the frequency viewpoint's behaviour and control purposes are satisfied. The results show the viability of the synchronverter as a frequency control strategy in electrical networks.  相似文献   

9.
Main electrical energy sources of Turkey are thermal (lignite, natural gas, coal, fuel oil, etc.) and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. However the installed wind power capacity is only 0.22% of total economical wind potential. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined.  相似文献   

10.
Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas–oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas–oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way.  相似文献   

11.
Demand response is considered to be a realistic and comparatively inexpensive solution aimed at increasing the penetration of renewable generations into the bulk electricity systems. The work in this paper highlights the demand response in conjunction with the optimal capacity of installed wind energy resources allocation. Authors proposed a total annual system cost model to minimize the cost of allocating wind power generating assets. This model contains capacity expansion, production, uncertainty, wind variability, emissions, and elasticity in demand to find out cost per hour to deliver electricity. A large‐scale electric grid (25 GW) is used to apply this model. Authors discovered that demand response based on interhourly system is not as much helpful as demand response grounded on intrahourly system. According to results, 32% wind generation share will provide the least cost. It is also worth noting that optimal amount of wind generation is much sensitive to installation cost as well as carbon tax.  相似文献   

12.
Decarbonization of the power sector is a key step towards greenhouse gas emissions reduction. Due to the intermittent nature of major renewable sources like wind and solar, storage technologies will be critical in the future power grid to accommodate fluctuating generation. The storage systems will need to decouple supply and demand by shifting electrical energy on many different time scales (hourly, daily, and seasonally). Power-to-Gas can contribute on all of these time scales by producing hydrogen via electrolysis during times of excess electrical generation, and generating power with high-efficiency systems like fuel cells when wind and solar are not sufficiently available. Despite lower immediate round-trip efficiency compared to most battery storage systems, the combination of devices used in Power-to-Gas allows independent scaling of power and energy capacities to enable massive and long duration storage. This study develops and applies a model to simulate the power system balance at very high penetration of renewables. Novelty of the study is the assessment of hydrogen as the primary storage means for balancing energy supply and demand on a large scale: the California power system is analyzed to estimate the needs for electrolyzer and fuel cell systems in 100% renewable scenarios driven by large additions of wind and solar capacities. Results show that the transition requires a massive increase in both generation and storage installations, e.g., a combination of 94 GW of solar PV, 40 GW of wind, and 77 GW of electrolysis systems. A mix of generation technologies appears to reduce the total required capacities with respect to wind-dominated or solar-dominated cases. Hydrogen storage capacity needs are also evaluated and possible alternatives are discussed, including a comparison with battery storage systems.  相似文献   

13.
S. Padrón  J.F. Medina  A. Rodríguez 《Energy》2011,36(12):6753-6762
A significant number of islands have been forced to restrict the penetration level of renewable energy sources (RES) in their conventional electrical power systems. These limitations attempt to prevent problems that might affect the stability and security of the electrical system. Restrictions that may apply to the penetration of wind energy can also be an obstacle when meeting European Union renewable energy objectives. As a partial solution to the problem, this paper proposes the installation of a properly managed, wind-powered, pumped hydro energy storage system (PHES) on the island of Gran Canaria (Canary Islands). Results from a dynamic model of the island’s power system show that the installation of a pumped storage system is fully supported in all circumstances. They also show that the level of wind penetration in the network can be increased. These results have been obtained assuming that two of the largest existing reservoirs on the island (with a difference in altitude of 281 m and a capacity of aprox. 5,000,000 m3 each) are used as storage reservoirs with three 54 MW generators. Likewise, the ability of such facilities to contribute to the stability of the system is shown. This type of installation can reduce fossil fuel consumption, reducing CO2 emissions. Moreover, not only can the PHES improve wind penetration level, but it also allows the number of wind farms installed to be increased. Regions with geographically suitable sites and energy problems similar to those on the Canary Islands are encouraged to analyze the technical and economic feasibility of installing similar power systems to the one in this paper. Such systems have an enormous, unexplored potential within the general guiding framework of policies promoting clean, renewable energy.  相似文献   

14.
Trends of distributed generation development in Lithuania   总被引:1,自引:0,他引:1  
The closure of Ignalina Nuclear Power Plant, impact of recent global recession of the economy, as well as changes and problems posed by the global climate change require significant alterations in the Lithuanian energy sector development. This paper describes the current status and specific features of the Lithuanian power system, and in particular discusses the role of the distributed generators. Country's energy policy during last two decades was focused on substantial modernisation of the energy systems, their reorganisation and creation of appropriate institutional structure and necessary legal basis. The most important factors stimulating development of distributed generation in Lithuania are the following: international obligations to increase contribution of power plants using renewable energy sources into electricity production balance; development of small (with capacity less than 50 MW) cogeneration power plants; implementation of energy policy directed to promotion of renewable energy sources and cogeneration. Analysis of the legal and economic environment, as well as principles of regulation of distributed generation and barriers to its development is presented.  相似文献   

15.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

16.
Electric mobility is expected to play a key role in the decarbonisation of the energy system. Continued development of battery electric vehicles is fundamental to achieving major reductions in the consumption of fossil fuels and of CO2 emissions in the transport sector. Hydrogen can become an important complementary synthetic fuel providing electric vehicles with longer ranges. However, the environmental benefit of electric vehicles is significant only if their additional electricity consumption is covered by power production from renewable energy sources. Analysing the implications of different scenarios of electric vehicles and renewable power generation considering their spatial and temporal characteristics, we investigate possible effects of electric mobility on the future power system in Germany and Europe. The time horizon of the scenario study is 2050. The approach is based on power system modelling that includes interchange of electricity between European regions, which allows assessing long‐term structural effects in energy systems with over 80% of renewable power generation. The study exhibits strong potential of controlled charging and flexible hydrogen production infrastructure to avoid peak demand increases and to reduce the curtailment of renewable power resulting in reduced system operation, generation, and network expansion costs. A charging strategy that is optimised from a systems perspective avoids in our scenarios 3.5 to 4.5 GW of the residual peak load in Germany and leads to efficiency gains of 10% of the electricity demand of plug‐in electric vehicles compared with uncontrolled loading.  相似文献   

17.
The global energy sector is shifting towards renewable energy (RE). When it comes to RE, Europe is the leading region for renewable share installation with 38.5% of RE of total power capacity (including 15% new RE), but still there were 914 GW of non-RE installed capacities operating at end of 2014. Records of decommissioned power plants indicate an average power plant technical lifetime of about 40 years for coal, 34 years for gas and 34 years for oil power plants. An assumed lifetime for nuclear power plants is 40 years, and the average age of the operating nuclear power stations is 30 years. From numbers related to non-RE capacities operating at end of 2014 and following this tendency, only 340 GW would still be operational by 2030, which implies the shutdown of 48.6% of the gas, 78.3% of the oil, 79.1% of the coal and 81.7% of the nuclear capacities. By 2050 only 6.1% and 1.4% of the currently operating capacity will be within the lifetime range for coal and nuclear, respectively, while 100% of the currently operating capacities of gas and oil would have reached the expected lifetime. From the total of the fossil and nuclear capacities of Europe, 65% is operating within the European Union, 72.3% of which is in Germany, France, Spain, Italy, United Kingdom and the Nordics. This presents a prime opportunity for Europe to evolve and set the example on the way towards sustainable power systems. To achieve the target of limiting climate change to 2 °C, net zero greenhouse gas emissions by 2050 may be required, resulting in 17 GW of coal capacities installed in Europe from 2010 onwards facing a shorter-than-expected operational lifetime, which will lead to stranded assets. Gas and oil-fired capacities commissioned from 2016 onwards may be required to shift to carbon-neutral fuels such as biodiesel or RE-based syngas.  相似文献   

18.
The presented work addresses the design and optimization under uncertainty of power generation systems using renewable energy sources and hydrogen storage. A systematic design approach is proposed that enables the simultaneous consideration of synergies developed among numerous sub-systems within an integrated power generation system and the uncertainty involved in the system operation. The Stochastic Annealing optimization algorithm is utilized to handle the increased combinatorial complexity and to enable the consideration of different types of uncertainty in the performed optimization. A parallel adaptation of this algorithm is proposed to address the associated computational requirements through execution in a Grid computing environment. The proposed developments are implemented in a system that consists of photovoltaic panels, wind generators, accumulators, an electrolyzer, storage tanks, a compressor, a fuel cell and a diesel generator. Numerous design and operating parameters are considered as decision variables, while uncertain parameters are associated with weather fluctuations and operating efficiency of the employed sub-systems. The obtained results indicate robust performance under realizable system designs, in response to external or internal operating variations.  相似文献   

19.
为解决传统高铁客运站供能系统中能源利用率较低的问题,以日运行购气费用和购电费用最优为优化目标,以系统运行过程中实时能量平衡为约束条件,以可再生能源出力和吸收式制冷占比为优化变量,建立多能源协同供能的分布式能源系统,并将该模型应用于北方某高铁客运站,分析可再生能源的利用率、制冷系统中可再生能源电出力的电制冷占比以及电网出力的节电率。仿真计算结果表明,分布式能源系统的使用提高了可再生能源的利用率,其中风电机组出力占其出力极限的96.5%,光伏机组出力94.7%;相比于参比系统,分布式能源系统的成本节约率为12.5%;电制冷占比为13%;电网的节电率为53.9%。  相似文献   

20.
It is proposed that electric power can be generated from wind by pulling a ship. A parafoil pulls and tows a ship. Electrical power is generated by hydraulic turbines installed on the ship below the water line. The electric power generated is expended onboard to electrolyze water to produce hydrogen or methanol or to convert carbon dioxide into storable forms of liquid. This paper describes the principle of designing such a system, shows the general features of such a system, and describes in detail two example designs which produce 6 MW and 0.8 GW. It is shown that a fleet of such ships operating in two different regions of the sea can produce much more energy than the world needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号