首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE) approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-)automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.  相似文献   

2.
To be sniffed at : Several 1‐ and 2‐substituted 1H‐imidazoles and 2‐substituted oxazoles, oxazolines and pyrazines have been synthesized and tested as inhibitors of the cytochrome P450 enzymes CYP2A6 and CYP2A13. 1‐Substituted 1H‐imidazoles bearing short chains (pentyl, hexyl or hexenyl) were found to be potent inhibitors of both enzymes, and showed IC50 values of about 2 μM .

  相似文献   


3.
We report two cases of patients who developed severe adverse drug reactions including persistent movement disorders, nausea, and vertigo during treatment with quetiapine at maximum daily doses ranging between 300 and 400 mg. The extensive hepatic metabolism of quetiapine is mainly attributed to cytochrome P450 3A4 (CYP3A4). However, there is recent evidence supporting the idea of CYP2D6 playing a role in the clearance of the quetiapine active metabolite norquetiapine. Interestingly, both patients we are reporting of are carriers of the CYP2D6*4 variant, predicting an intermediate metabolizer phenotype. Additionally, co-medication with a known CYP2D6 inhibitor and renal impairment might have further affected quetiapine pharmacokinetics. The herein reported cases could spark a discussion on the potential impact of a patient’s pharmacogenetic predisposition in the treatment with quetiapine. However, further studies are warranted to promote the adoption of pharmacogenetic testing for the prevention of drug-induced toxicities associated with quetiapine.  相似文献   

4.
Hydrogen sulfide (H2S) is a colorless, flammable, extremely hazardous gas with a “rotten egg” smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC) was decreased for midazolam (p < 0.05) and increased for tolbutamide (p < 0.05); while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats.  相似文献   

5.
Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.  相似文献   

6.
胡映松  李蒙  钟光祥 《浙江化工》2010,41(12):8-9,24
采用了一锅法合成工艺,以乙酰乙酸乙酯和硫脲为起始原料,经过脱水、脱醇缩合成环得到6-甲基-2-硫脲嘧啶,其结构经1H NMR、IR和MS表征。最佳反应条件为:硫脲90 mmol,n(硫脲):n(乙酰乙酸乙酯):n(氢氧化钾)=1:2.30:2.32时,产物收率为96.64%。  相似文献   

7.
乙基愈疮木酚合成方法研究   总被引:1,自引:0,他引:1  
介绍了一种合成乙基愈疮木酚的方法,同时考察了反应温度、时间、碱性底物、溶剂和催化剂等因素对收率的影响,确定了反应的最佳条件:以邻苯二酚和溴乙烷为原料,碳酸氢钠为碱性底物,乙醇为溶剂,碘化钾作为催化剂,70℃反应20h。产物经红外结构鉴定,总收率为90.1%。  相似文献   

8.
9.
Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium metabolism, maintaining normal calcium levels and bone health development. The most important compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2, or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concentrations, vitamin D is involved in cell growth and differentiation and immune function. Recently, the association between vitamin D deficiency and the progression of fibrosis in chronic liver disease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver and has the role of binding and transporting vitamin D and its metabolites to the target organs. VDBP also plays an important role in inflammatory response secondary to tissue damage, being involved in the degradation of actin. As intense research during the last decades revealed the possible role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors (VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD, both at the experimental and clinical levels.  相似文献   

10.
兰军  吴贤熙  解元承 《应用化工》2007,36(10):961-963
根据温元凯算法的主体思想,计算了一元和三元型硫铝酸钙的Gibbs自由能和其反应Gibbs自由能分别为G3oCaO.Al2O3.CaSO4.12H2O=-8 984.805 kJ/mol和G3oCaO.Al2O3.3CaSO4.6H2O=-10 076.685 kJ/mol。铝酸钠溶液脱硫反应的Gibbs自由能△G1o=-195.265 kJ/mol,△G2o=-187.725 kJ/mol,两式中△Gor<<0。由计算结果可知,有望实现以生成三元型硫铝酸钙的形式脱硫,使脱硫的效率提高3倍,且降低Al2O3损失。  相似文献   

11.
A series of 37 benzolactam derivatives were synthesized, and their respective affinities for the dopamine D2 and D3 receptors evaluated. The relationships between structures and binding affinities were investigated using both ligand‐based (3D‐QSAR) and receptor‐based methods. The results revealed the importance of diverse structural features in explaining the differences in the observed affinities, such as the location of the benzolactam carbonyl oxygen, or the overall length of the compounds. The optimal values for such ligand properties are slightly different for the D2 and D3 receptors, even though the binding sites present a very high degree of homology. We explain these differences by the presence of a hydrogen bond network in the D2 receptor which is absent in the D3 receptor and limits the dimensions of the binding pocket, causing residues in helix 7 to become less accessible. The implications of these results for the design of more potent and selective benzolactam derivatives are presented and discussed.  相似文献   

12.
The D2 subunit dopamine receptor represents a key factor in modulating dopamine release. Moreover, the investigated radiopharmaceutical ligands used in positron emission tomography imaging techniques are known to bind D2 receptors, allowing for dopaminergic pathways quantification in the living human brain. Thus, the biophysical characterization of these radioligands is expected to provide additional insights into the interaction mechanisms between the vehicle molecules and their targets. Using molecular dynamics simulations and QM calculations, the present study aimed to investigate the potential positions in which the D2 dopamine receptor would most likely interact with the three distinctive synthetic 11C-labeled compounds (raclopride (3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-methoxybenzamide)—RACL, FLB457 (5-bromo-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2,3-dimethoxybenzamide)—FLB457 and SCH23390 (R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine)—SCH)), as well as to estimate the binding affinities of the ligand-receptor complexes. A docking study was performed prior to multiple 50 ns molecular dynamics productions for the ligands situated at the top and bottom interacting pockets of the receptor. The most prominent motions for the RACL ligand were described by the high fluctuations of the peripheral aliphatic -CH3 groups and by its C-Cl aromatic ring groups. In good agreement with the experimental data, the D2 dopamine receptor-RACL complex showed the highest interacting patterns for ligands docked at the receptor’s top position.  相似文献   

13.
The CYP2D enzymes of the cytochrome P450 superfamily play an important role in psychopharmacology, since they are engaged in the metabolism of psychotropic drugs and endogenous neuroactive substrates, which mediate brain neurotransmission and the therapeutic action of those drugs. The aim of this work was to study the effect of short- and long-term treatment with the selective antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, which possesses antidepressant properties, on CYP2D expression and activity in the liver and brain of male rats. The presented work shows time-, organ- and brain-structure-dependent effects of 5-day and 3-week treatment with CP-101,606 on CYP2D. Five-day treatment with CP-101,606 increased the activity and protein level of CYP2D in the hippocampus. That effect was maintained after the 3-week treatment and was accompanied by enhancement in the CYP2D activity/protein level in the cortex and cerebellum. In contrast, a 3-week treatment with CP-101,606 diminished the CYP2D activity/protein level in the hypothalamus and striatum. In the liver, CP-101,606 decreased CYP2D activity, but not the protein or mRNA level, after 5-day or 3-week treatment. When added in vitro to liver microsomes, CP-101,606 diminished the CYP2D activity during prolonged incubation. While in the brain, the observed decrease in the CYP2D activity after short- and long-term treatment with CP-101,606 seems to be a consequence of the drug effect on enzyme regulation. In the liver, the direct inhibitory effect of reactive metabolites formed from CP-101,606 on the CYP2D activity may be considered. Since CYP2Ds are engaged in the metabolism of endogenous neuroactive substances, it can be assumed that apart from antagonizing the NMDA receptor, CP-101,606 may modify its own pharmacological effect by affecting brain cytochrome P450. On the other hand, an inhibition of the activity of liver CYP2D may slow down the metabolism of co-administered substrates and lead to pharmacokinetic drug–drug interactions.  相似文献   

14.
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.  相似文献   

15.
王军  白泉 《广东化工》2012,39(9):152-153
使用一根色谱柱,采用离线单柱二维液相色谱技术对鸡蛋清中的3种蛋白质进行了的分离纯化。第一维采用离子交换色谱模式,可一步分离纯化得到抗生物素蛋白和溶菌酶,其纯度分别达到95.3%和95.6%。将在离子交换模式下不保留的组分再通过疏水色谱模式进行第二维分离,通过条件优化,一步可分离纯化得到球蛋白G2,其纯度可达到98.1%。  相似文献   

16.
目的研究激活素受体相互作用蛋白2(ARIP2)在小鼠肝细胞中的表达及调控。方法采用半定量PCR技术检测ARIP2 mRNA在Hepal-6细胞中转录水平的动力学变化规律及其调控因素。结果Activin A刺激Hepal-6细胞ARIP2 mRNA的转录水平呈时间依赖性升高,刺激早期(4h)无明显变化,12h后显著升高。信号传导激动剂PMA和LPS刺激He- pal-6细胞24h,均可上调ARIP2 mRNA的转录水平,而A23187则抑制其转录。ARIP2过表达明显抑制Hepal-6细胞ActRIIA mRNA的转录水平,对ActRIIB则无影响。结论ARIP2作为激活素信号传导抑制蛋白,其表达受多种因素影响。ARIP2可能通过影响ActRIIA表达,参与激活素作用后期的信号传导负反馈调节过程。  相似文献   

17.
Cyclooxygenase-2 catalyzes the biosynthesis of prostaglandins from arachidonic acid and the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. PG-Gs are mediators of several biological actions such as macrophage activation, hyperalgesia, synaptic plasticity, and intraocular pressure. Recently, the human UDP receptor P2Y6 was identified as a target for the prostaglandin E2 glycerol ester (PGE2-G). Here, we show that UDP and PGE2-G are evolutionary conserved endogenous agonists at vertebrate P2Y6 orthologs. Using sequence comparison of P2Y6 orthologs, homology modeling, and ligand docking studies, we proposed several receptor positions participating in agonist binding. Site-directed mutagenesis and functional analysis of these P2Y6 mutants revealed that both UDP and PGE2-G share in parts one ligand-binding site. Thus, the convergent signaling of these two chemically very different agonists has already been manifested in the evolutionary design of the ligand-binding pocket.  相似文献   

18.
The purpose of the study was to investigate the role of vitamin D binding protein (VDBP, DBP) and its polymorphism in the vitamin D pathway and human health. This narrative review shows the latest literature on the most popular diseases that have previously been linked to VDBP. Vitamin D plays a crucial role in human metabolism, controlling phosphorus and calcium homeostasis. Vitamin D binding protein bonds vitamin D and its metabolites and transports them to target tissues. The most common polymorphisms in the VDBP gene are rs4588 and rs7041, which are located in exon 11 in domain III of the VDBP gene. rs4588 and rs7041 may be correlated with differences not only in vitamin D status in serum but also with vitamin D metabolites. This review supports the role of single nucleotide polymorphisms (SNPs) in the VDBP gene and presents the latest data showing correlations between VDBP variants with important human diseases such as obesity, diabetes mellitus, tuberculosis, chronic obstructive pulmonary disease, and others. In this review, we aim to systematize the knowledge regarding the occurrence of diseases and their relationship with vitamin D deficiencies, which may be caused by polymorphisms in the VDBP gene. Further research is required on the possible influence of SNPs, modifications in the structure of the binding protein, and their influence on the organism. It is also important to mention that most studies do not have a specific time of year to measure accurate vitamin D metabolite levels, which can be misleading in conclusions due to the seasonal nature of vitamin D.  相似文献   

19.
20.
Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π-π, CH-π and CH-CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号