首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(17):27299-27307
The cancerous bone may be treated using magnetite nanoparticles (MNPs) coupled with hyperthermia treatment technology. During the last three decades, calcium-silicate (CS) based bioceramics have been investigated as a proper choice due to their bioactivity, biocompatibility, magnetization property, and ability to form suitable apatite for hard tissue engineering approaches. For this purpose, three-dimensional bio-nanocomposite scaffolds utilizing bioactive wollastonite (WS) and bioglass (BG) as composed based materials with 0 wt% (S1), 5 wt% (S2), 10 wt% (S3), and 15 wt% (S4) of Zr–Fe3O4 are considered in this study. These materials with two various space-agents such as sodium chloride (NaCl) and sodium bicarbonate (NaHCO3) particles containing ball mill with high energy and pressing under 150 MPa, and sintered at 850 °C are analyzed. Additionally, X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating-sample magnetometer (VSM), and mechanical tests include of toughness and compressive strength are investigated. The powder's and scaffold's crystals size are measured between 30 and 50 nm, and the pores and porosity size are measured from 70 to 180 μm and 25%–40%. The VSM curves illustrate that the zirconium-ferrite has a soft magnetic property, which is easily magnetized by applying a small amount of magnetic field, and it rapidly loses its magnetic moment by cutting off the field. The low coercive force, as well as high magnetic saturation with low residue, are represented for the S2 and S3. The obtained outcomes indicate that the best amounts of mechanical properties amongst the specimens are related to the specimen with 15 wt%, 7.9 ± 1 MPa of compressive strength, and 203.3 ± 10 MPa of elastic modulus. Likewise, the biological assessment shows that the sample containing 10 wt% MNPs provides a better apatite creation on porous scaffolds after 28 days. The gained outcomes represent that those specimens containing 10 and 15 wt% MNPs provide proper biological and mechanical replies.  相似文献   

2.
《Ceramics International》2021,47(22):31399-31406
Magnetic nanoparticles are one of the most promising candidates to achieve localization of heat in the region of cancerous tissue. Modified co-precipitation technique is carried out to synthesize GdxFe3-xO4 (where, x = 0.00 (IO), 0.04 (IOG02), 0.08 (IOG04), 0.12 (IOG06), 0.16 (IOG08), 0.20 (IOG10). A systematic characterization was performed to study the structural, morphological, elemental, and magnetic properties of the synthesized nanoparticles using X-Ray diffraction (XRD), Field emission scanning microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), Vibrating sample magnetometer (VSM) respectively. The structural analysis revealed the single-phase crystalline nature of magnetite, with the co-existence of secondary phase hematite and goethite beyond x ≥ 0.16. The morphological analysis implied an increase in particle size due to Gd substitution with particle sizes ranging from 7 to 19 nm. Magnetic measurements revealed a magnetic transformation from superparamagnetic nature with magnetic coercivity and remanence to weak ferromagnetic nature upon an increase in the gadolinium content of magnetite. Further, hyperthermia studies showed that with increasing gadolinium concentration, the heating rate, specific absorption rate, and the intrinsic loss power of gadolinium substituted magnetites were increased. The increased specific absorption rate of gadolinium substituted magnetites with low HF factors makes them ideal for clinical hyperthermia applications.  相似文献   

3.
As a new malignant tumor therapy method with low side effect, high safety and efficiency, magnetic induction hyperthermia (MIH) has attracted great attention in recent years. As magnetic induction heating media, magnetic nanoparticles (MNPs) are critical for the development of MIH. For clinical safety, the MNPs need a high heating efficiency to reduce the applied dose, minimizing the risk of side effect. Increasing the saturation magnetization and initial susceptibility, adjusting the magnetocrystalline anisotropy constant and particle size to the optimal values are the effective methods of improving heating efficiency. On the other hand, a suitable Curie temperature is desired to realize the self-regulation of the therapy temperature, avoiding the use of clumsy and expensive temperature monitoring and control devices. Substituting the magnetic ions in tetrahedral (A) site of the spinel ferrite with nonmagnetic ions or magnetic ions with smaller magnetic moments can effectively reduce the superexchange interaction between the A and B (octahedral) sites, decreasing Curie temperature. Yet, the reduction of the Curie temperature by ion doping usually reduces the saturation magnetization, decreasing heating efficiency. Increasing the fraction of heat generated by relaxation loss and increasing the saturation magnetization may be used to improve the heating efficiency.  相似文献   

4.
Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features.In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels.The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed.Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.  相似文献   

5.
《Ceramics International》2022,48(17):24485-24495
Magnetic Fluid Hyperthermia (MFH) is an emerging and safe technique for cancer treatment. Radiotherapy and Chemotherapy are widely adopted techniques for treating cancer but cause damage to the nearby healthy tissue. This paves the way for hyperthermia treatment for cancer. Since healthy cells are more heat-tolerant than malignant cells, magnetic nanoparticles with superparamagnetic properties were used in hyperthermia treatment. Surface modified magnetite (Fe3O4) iron oxide nanoparticles with enhanced stability, solubility, bio-compatibility and magnetic property were employed in hyperthermia treatment. In the present study, Superparamagnetic Samarium doped magnetite (Fe3O4:Sm) nanoparticles were functionalized with Oleylamine (OAm) and polyvinyl alcohol (PVA) by the sol-gel process. The obtained nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and UV–Visible diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA) and Vibrating Sample Magnetometer (VSM). From XRD data, the crystallite size of oleylamine coated samarium doped magnetite (OAm–Fe3O4:Sm) and PVA-coated samarium doped Fe3O4 (PVA- Fe3O4:Sm) were found to be 9.5 nm and 10.9 nm, respectively. TEM images of the functionalized nanoparticles were visualized as a spherical structure with reduced agglomeration. UV-DRS gives the bandgap value of OAm–Fe3O4:Sm and PVA- Fe3O4:Sm coated samarium doped magnetite to be 2.3 eV and 2 eV respectively. VSM measurement of OAm-Fe3O4:Sm and PVA- Fe3O4:Sm coated, showed superparamagnetic behaviour. The cytotoxicity study on the L929 cell line shows that both oleylamine and PVA-coated samarium doped magnetite were less toxic and biocompatible compared to the uncoated Fe3O4:Sm. The hyperthermia study reveals a rise in temperature within a few seconds with a high Specific Absorption Rate (SAR) value, confirming that the functionalized Samarium doped Fe3O4 was an effective nanomaterial for hyperthermia application.  相似文献   

6.
《Ceramics International》2023,49(10):15183-15199
AC induction heating properties of colloidal nano-aggregates of ferrimagnetic cobalt ferrite magnetic nanoparticles (MNPs) are reported in this study. Bio-compatible chitosan polymer-coated CoFe2O4 MNPs are synthesized using a co-precipitation method. Powder X-ray diffraction indicates the formation of mixed spinel structures for the uncoated (CP) and chitosan-coated (CP–CHN) MNPs, which is also supported by the cation distributions obtained from the Mössbauer spectra. The presence of chitosan coating on the surface of the CP-CHN MNPs is confirmed using X-ray photoelectron and Fourier transform infrared spectroscopy studies. Transmission electron microscopy shows primary particle sizes of ∼13 nm, which is larger than the superparamagnetic size limit of the CoFe2O4 MNPs. Hence, the CP and CP-CHN MNPs exhibit ferrimagnetic behaviour at room temperature with estimated saturation magnetization values of ∼77.4 emu/g and ∼74.4 emu/g, respectively. The average hydrodynamic diameter is found to be ∼90 ± 8 nm for an aqueous dispersion of the CP-CHN MNPs, which indicate the formation of colloidal nano-aggregates due to the ferrimagnetic interaction of the primary MNPs. The CP-CHN sample exhibits a significantly high AC induction heating efficiency of ∼267.2 ± 4.0 W/gFe, where the higher heating efficiency is attributed to the combination of hysteresis and relaxation-mediated magneto-thermal energy conversion, as confirmed using Stoner-Wohlfarth model-based dynamic hysteresis loop calculations. Further, the heating efficiency decreases with increasing sample concentration due to an increase in dipolar interaction, which is confirmed using semi-empirical calculations, where a lowering of the initial susceptibility is observed at higher concentrations. The higher AC induction heating efficiency, coupled with the demonstrated significant bio-compatibility during in vitro cytotoxicity studies, make the cobalt ferrite nano-aggregates potential candidates for magnetic hyperthermia.  相似文献   

7.
《Ceramics International》2017,43(6):4831-4840
Composite bone cements, based on commercial polymethylmethacrylate, loaded with ferrimagnetic and bioactive glass-ceramic particles, were prepared and characterized. The characterization included: the evaluation of hysteresis losses in quasi static conditions, the quantification of specific power losses by calorimetric tests, optimization of experimental heating curve for hyperthermia treatment, confirmed by a theoretical model developed with Comsol Multiphysics®, biological evaluations after magnetic induction heating using both tumoral osteosarcoma cells and not tumoral fetal osteoblast cells, and the evaluation of setting time.All the samples confirmed the ability to generate a hysteresis area, both at low and high external magnetic field, proportionally to the amount of magnetite, which is strictly correlated to calorimetric measurements. The heating generation of the sample was evaluated and controlled with two different methods and the results were comparable. The preliminary cellular heating tests revealed a selective tumoral cell death induced by the use of a suitable alternate magnetic field.  相似文献   

8.
磁流体在肿瘤中的扩散和能量在肿瘤中的传递是磁流体热疗中的关键过程,并直接影响到治疗的效果。本文针对这些关键过程,建立了靶区内球形肿瘤的多物理场耦合模型,并采用有限元方法,对其进行了数值求解,获得了肿瘤靶区组织的压力分布、温度分布及磁流体浓度分布。分析了扩散时间、注射点以及磁流体比吸收率等关键因素对温度分布的影响。结果表明,延长扩散时间、在注射总量一定的情况下增加注射点数及增大比吸收率,均可使肿瘤中达到细胞坏死温度的体积增大,从而提高肿瘤的治愈率。但增大比吸收率的同时也会使正常组织的温升增加。  相似文献   

9.
The main objective of this study was to investigate the effect of magnetic treatment on the physico-chemical and bacteriological characteristics of hard waters. The scaling power of tested waters was evaluated using the rapid controlled precipitation (RCP) method. Results showed that magnetic treatment affects calcium carbonate crystallization. The RCP tests confirmed that the scaling power of the magnetically treated water was inhibited. Experimental results also indicated a significant improvement in the bacteriological quality of the treated water. Average reductions of 2.02 log Total coliforms, 0.95 log Escherichia coli and 1.06 log Faecal streptococci were obtained.  相似文献   

10.
磁流体在肿瘤中的扩散和能量在肿瘤中的传递是磁流体热疗中的关键过程,并直接影响到治疗的效果。本文针对这些关键过程,建立了靶区内球形肿瘤的多物理场耦合模型,并采用有限元方法,对其进行了数值求解,获得了肿瘤靶区组织的压力分布、温度分布及磁流体浓度分布。分析了扩散时间、注射点以及磁流体比吸收率等关键因素对温度分布的影响。结果表明,延长扩散时间、在注射总量一定的情况下增加注射点数及增大比吸收率,均可使肿瘤中达到细胞坏死温度的体积增大,从而提高肿瘤的治愈率。但增大比吸收率的同时也会使正常组织的温升增加。  相似文献   

11.
The effect of magnetic field gradients on the electrochemical oxygen reduction was studied with relevance to the cathode gas reactions in polymer electrolyte fuel cells. When a permanent magnet was set behind a cathode, i.e. platinum foil or Pt-dispersed carbon paper for both electrochemical and rotating electrode experiments and oxygen was supplied to the uphill direction of the magnetic field, electrochemical flux was enhanced and the current increased with increasing the absolute value of magnetic field. This magnetic effect can be explained by the magnetic attractive force toward O2 gas. When magnet particles were included in the catalyst layer of the cathode and the cathode was magnetized, the current of oxygen reduction was higher than that of nonmagnetized cathode. A new design of the cathode catalyst layer incorporating the magnet particles was tested, demonstrating a new method to improve the fuel cell performance.  相似文献   

12.
Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.  相似文献   

13.
Boron oxide (B2O3), water content, particle size, and specific surface area are important parameters in colemanite (2CaO3B2O35H2O) in the production of glasses especially of E-glass, boron carbide (B4C) and borides (CaB6, LaB6, SiB6, LiB6, MgB2, TiB2, and TaB2 etc.) which are used in ceramics applications. Calcination, a thermal treatment method, is known to affect these parameters significantly. In this study, differential thermal analysis (DTA)-TG, X-ray diffraction (XRD), SEM, BET and chemical analysis were performed on Turkish colemanites before and after calcination. The results are compared in order to elucidate the influence of calcination on processing. An application in the ceramic industry for the production of CaB6 is demonstrated. Results indicate that the raw colemanite could be processed through calcination in the temperature range of 400 and 600 °C without milling. Calcination is shown to have a significant impact on colemanite similar to that of the milling process. As a result, colemanite was upgraded to ∼58 wt.% B2O3 for <250 μm yielding a specific surface area of 2.8 m2/g. This is higher than that of milled colemanite. Because of the crystal water of colemanite, CaB6 is not produced from uncalcined colemanite, but easily produced from colemanite calcined at 600 °C.  相似文献   

14.
《Ceramics International》2015,41(7):8637-8642
Manganese ferrite nanoparticles were electro-crystallized in an electrochemical cell containing two iron electrodes, and an electrolyte solution of sodium sulfate, sodium butanoate, and manganese sulfate hydrate. The samples were characterized by X-ray diffraction, electron microscopy, magnetometry, and Mössbauer spectroscopy methods. The crystal structure of the samples was studied using X-ray diffraction. Based on obtained results we found that the manganese ferrite nanoparticles are formed in the electrochemical cell containing 0.001 M manganese sulfate hydrate. Also, the formation of a paramagnetic secondary phase in the sample without manganese is suppressed by adding manganese salt in the electrochemical cell. The nanoparticle size, shape, and morphology were characterized using electron microscopy. Magnetization curves show that all samples are magnetically soft and their specific magnetization ranges from 15 A m2 kg−1 to 75 A m2 kg−1, depending on the growth conditions. Room temperature Mössbauer spectra confirm the formation of nonstoichiometric spinel ferrite of magnetite or manganese ferrite, again depending on the growth conditions. Based on Mössbauer analysis, reduction in the population of octahedral sites provides direct evidence for the presence of the manganese ions substitution in the octahedral sites.  相似文献   

15.
The surfaces of glass fibers were sized by polyvinyl alcohol (PVA), polyester, and epoxy resin types in order to improve the mechanical interfacial properties of fibers in the unsaturated polyester matrix. The surface energetics of the glass fibers sized were investigated in terms of contact angle measurements using the wicking method based on the Washburn equation, with deionized water and diiodomethane as the wetting liquids. In addition, the mechanical behaviors of the composites were studied in the context of the interlaminar shear strength (ILSS), critical stress intensity factor (KIC), and flexural measurements. Different evolutions of the London dispersive and specific (or polar) components of the surface free energy of glass fibers were observed after different sizing treatments. The experimental result of the total surface free energies calculated from the sum of their two components showed the highest value in the epoxy‐sized glass fibers. From the measurements of mechanical properties of composites, it was observed that the sizing treatment on fibers could improve the fiber–matrix interfacial adhesion, resulting in improved final mechanical behaviors, a result of the effect of the enhanced total surface free energy of glass fibers in a composite system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1439–1445, 2001  相似文献   

16.
It is very important to control the substructure of a membrane prepared by the phase inversion process. This article reports a novel method to control the substructure of ultrafiltration (UF) membrane by the combined effect of a magnetic filler and a parallel magnetic field. A series of polysulfone (PSF)–ferrosoferric oxide (Fe3O4) UF membranes with different amounts of Fe3O4 were prepared in a parallel magnetic field from suspensions, using the phase inversion process. The suspensions consisted of PSF, N,N‐dimethylacetamide, poly(vinylpyrrolidone), and Fe3O4. Magnetic Fe3O4 particles in a casting solution are expected to arrange along the direction of a magnetic field during the membrane formation. This kind of oriented arrangement can gradually change the cross‐sectional microstructure of a membrane from normal finger‐like macrovoids perpendicular to the membrane surface into macrovoids parallel to the membrane surface, with increasing Fe3O4 content. As a result, a novel membrane with “lamellar macrovoids” (parallel to the membrane surface) in the sublayer was prepared as the Fe3O4 content reached 70 wt %. Furthermore, the membrane with 70 wt % Fe3O4 not only had the best flux and rejection but also had a good antipressure ability. The formation mechanism of novel microstructure of the sublayer in the UF membrane is also discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号