首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated the effects of adipose-derived extract (AE) on cultured chondrocytes and in vivo cartilage destruction. AE was prepared from human adipose tissues using a nonenzymatic approach. Cultured human chondrocytes were stimulated with interleukin-1 beta (IL-1β) with or without different concentrations of AE. The effects of co-treatment with AE on intracellular signaling pathways and their downstream gene and protein expressions were examined using real-time PCR, Western blotting, and immunofluorescence staining. Rat AE prepared from inguinal adipose tissues was intra-articularly delivered to the knee joints of rats with experimental osteoarthritis (OA), and the effect of AE on cartilage destruction was evaluated histologically. In vitro, co-treatment with IL-1β combined with AE reduced activation of the p38 and ERK mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of the p65 subunit of nuclear factor-kappa B (NF-κB), and subsequently downregulated the expressions of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, IL-6, and IL-8, whereas it markedly upregulated the expression of IL-1 receptor type 2 (IL-1R2) in chondrocytes. Intra-articular injection of homologous AE significantly ameliorated cartilage destruction six weeks postoperatively in the rat OA model. These results suggested that AE may exert a chondroprotective effect, at least in part, through modulation of the IL-1β-induced inflammatory signaling pathway by upregulation of IL-1R2 expression.  相似文献   

4.
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.  相似文献   

5.
6.
7.
Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 μg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.  相似文献   

8.
9.
Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.  相似文献   

10.
Tumor necrosis factor α (TNF-α) influences endothelial cell viability by altering the regulatory molecules involved in induction or suppression of apoptosis. However, the underlying mechanisms are still not completely understood. In this study, we demonstrated that A20 (also known as TNFAIP3, tumor necrosis factor α-induced protein 3, and an anti-apoptotic protein) regulates the inhibitor of apoptosis protein-2 (cIAP-2) expression upon TNF-α induction in endothelial cells. Inhibition of A20 expression by its siRNA resulted in attenuating expression of TNF-α-induced cIAP-2, yet not cIAP-1 or XIAP. A20-induced cIAP-2 expression can be blocked by the inhibition of phosphatidyl inositol-3 kinase (PI3-K), but not nuclear factor (NF)-κB, while concomitantly increasing the number of endothelial apoptotic cells and caspase 3 activation. Moreover, TNF-α-mediated induction of apoptosis was enhanced by A20 inhibition, which could be rescued by cIAP-2. Taken together, these results identify A20 as a cytoprotective factor involved in cIAP-2 inhibitory pathway of TNF-α-induced apoptosis. This is consistent with the idea that endothelial cell viability is dependent on interactions between inducers and suppressors of apoptosis, susceptible to modulation by TNF-α.  相似文献   

11.
12.
Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to assess the biological response after ex vivo exposure to graphene at three different concentrations (1, 10, and 100 µg/mL). mRNA expression of specific genes or intestinal cytokine abundance was assessed using real-time PCR or multiplex immunoassays, respectively. Pristine graphene-activated genes that are related to binding and adhesion (GTPase and KRAS) within 2 h of exposure. Furthermore, the PCNA (proliferating cell nuclear antigen) gene was upregulated after exposure to graphene at all concentrations. Ingenuity pathway analysis revealed that STAT3 and VEGF signaling pathways (known to be involved in cell proliferation and growth) were upregulated. Graphene exposure (10 µg/mL) for 24 h significantly increased levels of pro-inflammatory cytokines IFNγ, IL-8, IL-17, IL-6, IL-9, MIP-1α, and Eotaxin. Collectively, these results indicated that graphene may activate the STAT3–IL23–IL17 response axis. The findings in this study provide information on toxicity evaluation using a human-relevant ex vivo colon model and serve as a basis for further exploration of its bio-applications.  相似文献   

13.
Maltose-binding protein (MBP) is a critical player of the maltose/maltodextrin transport system in Escherichia coli. Our previous studies have revealed that MBP nonspecifically induces T helper type 1 (Th1) cell activation and activates peritoneal macrophages obtained from mouse. In the present study, we reported a direct stimulatory effect of MBP on RAW264.7 cells, a murine macrophage cell line. When stimulated with MBP, the production of nitric oxide (NO), IL-1β, IL-6 and IL-12p70, and the expressions of CD80, MHC class II and inducible nitric oxide synthase (iNOS) were all increased in RAW264.7 cells, indicating the activation and polarization of RAW264.7 cells into M1 macrophages induced by MBP. Further study showed that MBP stimulation upregulated the expression of TLR2 and TLR4 on RAW264.7 cells, which was accompanied by subsequent phosphorylation of IκB-α and p38 MAPK. Pretreatment with anti-TLR2 or anti-TLR4 antibodies largely inhibited the phosphorylation of IκB-α and p38 MAPK, and greatly reduced MBP-induced NO and IL-12p70 production, suggesting that the MBP-induced macrophage activation and polarization were mediated by TLR2 and TLR4 signaling pathways. The observed results were independent of lipopolysaccharide contamination. Our study provides a new insight into a mechanism by which MBP enhances immune responses and warrants the potential application of MBP as an immune adjuvant in immune therapies.  相似文献   

14.
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.  相似文献   

15.
Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. In addition, it was investigated whether regulating NF-κB and MAPK signaling pathways are involved. Intracellular IL-33 was measured in human endothelial cells (HUVECs) pre-incubated for 24 h with butyrate (0.1 mM or 5 mM), propionate (0.3 mM or 10 mM), or trichostatin A (TSA, 0.5 μM) prior to TNFα (1 ng/mL) stimulation (24 h). The effects of butyrate, propionate, and TSA on TNFα-induced IL-8, vascular cell adhesion molecule-1 (VCAM-1), NF-κB, and MAPK signaling pathways in normal HUVECs and IL-33 siRNA (siIL-33)-transfected HUVECs were compared to study the role of IL-33 in the protective effects of butyrate and propionate. Endogenous IL-33 was highly expressed in the perinuclear in HUVECs, which was significantly reduced by TNFα stimulation. The TNFα-induced reduction in IL-33 was prevented by pre-incubation with butyrate or propionate. Butyrate (0.1 mM), propionate (0.3 mM), and TSA inhibited the IL-8 production and activation of NF-κB. Interestingly, this effect was not observed in siIL-33-transfected HUVECs. The effects of butyrate (5 mM), propionate (10 mM), and TSA (0.5 μM) on VCAM-1 expression and activation of MAPK signaling pathways were not affected by siIL-33 transfection. In conclusion, we showed that the inhibitory effects of butyrate and propionate on TNFα-induced IL-8 production were mediated by the HDACs/IL-33/NF-κB pathway, while their effects on VCAM-1 expression might be associated with the HDACs/MAPK signaling pathway, independently of IL-33.  相似文献   

16.
17.
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.  相似文献   

18.
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose–response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.  相似文献   

19.
BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100β, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood–brain barrier (BBB) damage (Evan’s blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1β) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.  相似文献   

20.
Mucosal-associated invariant T (MAIT) cells represent a distinct T cell population restricted by the MHC-class-I-related molecule, MR1, which recognizes microbial-derived vitamin B2 (riboflavin) metabolites. Their abundance in humans, together with their ability to promptly produce distinct cytokines including interferon γ (IFNγ) and tumor necrosis factor α (TNFα), are consistent with regulatory functions in innate as well as adaptive immunity. Here, we tested whether the alarmin interleukin 33 (IL-33), which is secreted following inflammation or cell damage, could activate human MAIT cells. We found that MAIT cells stimulated with IL-33 produced high levels of IFNγ, TNFα and Granzyme B (GrzB). The action of IL-33 required IL-12 but was independent of T cell receptor (TCR) cross-linking. MAIT cells expressed the IL-33 receptor ST2 (suppression of tumorigenicity 2) and upregulated Tbet (T-box expressed in T cells) in response to IL-12 or IL-33. Electronically sorted MAIT cells also upregulated the expression of CCL3 (Chemokine C-C motif ligand 3), CD40L (CD40 Ligand), CSF-1 (Colony Stimulating Factor 1), LTA (Lymphotoxin-alpha) and IL-2RA (IL-2 receptor alpha chain) mRNAs in response to IL-33 plus IL-12. In conclusion, IL-33 combined with IL-12 can directly target MAIT cells to induce their activation and cytokine production. This novel mechanism of IL-33 activation provides insight into the mode of action by which human MAIT cells can promote inflammatory responses in a TCR-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号