首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The increasingly severe environmental pollution and energy shortage issues have demanded the production of renewable and sustainable biofuels to replace conventional fossil fuels. Lignocellulosic (LC) biomass as an abundant feedstock for second-generation biofuel production can help overcome the shortcomings of first-generation biofuels related to the “food versus fuel” debate and feedstock availability. Embracing the “circular bioeconomy” concept, an integrated biorefinery platform of LC biomass can be performed by employing different conversion technologies to obtain multiple valuable products. This review provides an overview of the principles and applications of thermochemical processes (pyrolysis, torrefaction, hydrothermal liquefaction, and gasification) and biochemical processes (pretreatment technologies, enzyme hydrolysis, biochemical conversion processes) involved in LC biomass biorefinery for potential biofuel applications. The engineering perspective of LC biofuel production on separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP) were also discussed.  相似文献   

2.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

3.
The development of alternative fuels has been promoted by the extreme fossil fuel consumption brought on by urbanisation and deteriorating pollution. Due to its high energy and combustible qualities, biohydrogen has been perceived as a potential fuel substitute in dealing with issues related to the rising emission of greenhouse gases and global warming. As a source of carbon sequestration and sustainable renewable energy, biohydrogen synthesis by algae species has been prevalent in research scale. This review focuses on the novel and recent metabolic approaches for enhanced algal based biohydrogen production. Pretreatment methods available and scaling techniques used for enhancing the biohydrogen productivity using algal species have been elaborated in the review. Algal characteristics that make them suitable alternative for biohydrogen production are discussed briefly. Various pretreatment methods such as physical, chemical, biological and thermal are elaborated. In addition, the factors involved in influencing the biohydrogen productivity and the metabolic engineering approaches for modifying the pathway in algae are highlighted. Scaling up of process using different types of photobioreactors such as tubular, flat panel, airlift and stirred tank are reported that briefs about merits and demerits of each photobioreactor.  相似文献   

4.
The use of fossil fuels is causing a huge environmental impact due to the emission of air pollutants, greenhouse gases, and other ground and water contaminants; also, these fuels are depleting; the world is facing an energy crisis in the years to come if no preventive actions are done. Renewable energies are arising as promising technologies that will complement and even replace conventional fuels shifting the global energy matrix to a cleaner and eco-friendly future. Microalgal biohydrogen is one of those emerging technologies that is showing positive results. This work provides an overview of the key parameters to produce hydrogen from microalgae especially from the genus Chlorella. Current status of chemical and biological hydrogen producing technologies is presented, along with the main metabolic processes for this purpose in microalgae, their characteristic enzymes, several strategies to induce hydrogen production, the key operation parameters and finally providing some remarks about scaling-up and industrial-scale applications.  相似文献   

5.
Although various pretreatment methods are employed to promote sludge hydrolysis and thereby promoting methane production in the subsequent microbial electrolysis cell assisted anaerobic digestion (MEC-AD) system, the questions arise are, “which pretreatment method on waste activated sludge (WAS) maximises the sludge hydrolysis and what is the optimal applied voltage on anaerobic digestion (AD) to stimulates the direct interspecies electron transfer (DIET) performance and thereby accelerating the methane production fed with pretreated WAS?” was still unanswered. Herein, firstly, a series of pretreatment methods to hydrolyse and mineralise the organic matter of WAS was performed to evaluate solubilization efficiency and thereafter, the influence of different applied voltages (0.3 V, 0.6 V, and 0.9 V) on coupled MEC-AD reactors fed with pretreated WAS was investigated to apprehend the DIET promotion for methane production. The results indicated that in MEC-AD reactors, the methane yield increased by 27.2%, 44.8%, and 37.3% when the applied voltages were 0.3 V, 0.6 V, and 0.9 V, respectively. Therefore, the alkaline-thermal pretreatment (ATP) enhanced the sludge hydrolysis in WAS, followed by an applied voltage of 0.6 V in the MEC-AD reactor fed with pretreated WAS, enhanced methane production under DIET stimulation induced by the increased abundance of electroactive microorganisms (EAM) and the advanced electron transfer. Besides, the energy balance estimation validates that with an applied voltage of 0.6 V in MEC-AD could achieve higher net energy input.  相似文献   

6.
This work explores the production of biohydrogen from brewery wastewater using as inoculum a culture produced by natural fermentation of synthetic wastewater and Klebsiella pneumoniae isolated from the environment. Klebsiella pneumoniae showed good performance as inoculum, as evaluated using assays of between 9 and 16 cycles, with durations of 12 and 24 h, carbohydrate concentrations from 2.79 to 7.22 g L−1, and applied volumetric organic loads from 2.6 to 12.6 g carbohydrate L−1 day−1. The best results were achieved with applied volumetric organic loads of 12.6 g carbohydrate L−1 day−1 and cycle length of 12 h, resulting in mean volumetric productivity of 0.88 L H2 L−1 day−1, maximum molar flow of 10.80 mmol H2 h−1, and mean yield of 0.70 mol H2 mol−1 glucose consumed. The biogas H2 content was between 18 and 42%, while the mean organic compounds removal and carbohydrate conversion efficiencies were 23 and 81%, respectively. The inoculum produced by natural fermentation was not viable.  相似文献   

7.
Biohydrogen is perceived as the versatile fuel of the future, having the ability to replace fossil fuels in many industrial and commercial sectors and offering the promise of fulfilling future renewable energy demands. Among various options available for the generation of biohydrogen, photofermentation with the help of microbes and algae is one of the most eye-catching approaches due to its relative efficiency, cost economics, and reduced environmental impacts. Generation of biohydrogen by dark fermentation, microbial electrolysis cell as well as photofermentation, along with their bioprocesses, already have been discussed in earlier literature. Photofermentation offers advantages of both biophotolysis (utilization of light energy) and dark fermentation (utilization of organic waste materials as substrate). Many researchers have been reported successful biohydrogen production from photofermentation-based techniques, however not much information is available regarding the considerable gap in industrial and economic challenges in the production of biohydrogen at the commercial level through photofermentation. Efforts have been made in this review to provide updated information on various new technologies being used in this sector, such as the integration of photofermentation with dark fermentation, the use of recombinant DNA technology, and the use of bionanotechnology to improve biohydrogen production through the utilization of various waste. Various challenges in this sector, as well as future perspectives, have been meticulously addressed in order to explore the future of green biohydrogen production for a sustainable future.  相似文献   

8.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

9.
Pyrolysis of Date Palm Petiole (DPP) and Date Palm Seed (DPS) biomass was conducted by fast pyrolysis and on-line analysis of the outlet stream by gas chromatography connected to mass spectrometry (Py-GCMS) at different temperatures (450, 500 and 600 °C) in order to study the effect of this variable on the product distribution. The concentration of the components in the volatile stream (bio-oil and non-condensable gases) was greatly influenced by temperature and, to a minor extent, by the content of the biomass components (cellulose, hemicellulose and lignin). The most abundant compound families quantified are acids, anhydrosugars, ketones, furans and phenols. The most abundant compound identified was levoglucosan, which is mainly derived from the degradation of cellulose, with its relative content being as high as 18.3% for DPS pyrolysis at 450 °C and considerably lower for DPP pyrolysis (12.2%). The relative content of acetic acid was as higher as 10.2% at 450 °C for DPP pyrolysis. The knowledge of product composition is crucial for the development of large scale fast pyrolysis units for the valorization of these Tunisian agricultural wastes.  相似文献   

10.
In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm.  相似文献   

11.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

12.
Leachate generated in landfills is considered as a hazardous waste stream due to its composition and needs adequate treatment for environmental protection purposes. Nonetheless, a contemporary technology should not only be able to deal with its degradation, but at the same time, recover energy in various forms. Such valorization approaches with priority on these dual-aims are potentially those that rely on anaerobic biosystems. In the literature, processes considered on that matter include fermentative, digestive and bioelectrochemical set-ups to deliver energy-carriers such as biohydrogen (DF), biogas (AD) and electricity (BES), respectively. Moreover, to enhance the global efficiency of leachate utilization, it has been recently trending to develop integrated options by combining these systems (DF, AD, BES) into a cascade scheme. In this review, it is intended to give an insight to the research activities realized in these fields and show possible directions towards the better exploitation of leachate feedstock under anaerobic conditions.  相似文献   

13.
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems.  相似文献   

14.
In this study, different pretreatment methods, including lyophilization, hydrothermal pretreatment, and ultrasound combined with dilute alkali post-cooking, were investigated to enhance the efficiency of enzymatic saccharification and biohydrogen production of the wheat straw. All pretreatment methods could effectively remove lignin and hemicellulose while retaining cellulose, further enhancing the biomass accessibility for subsequently enzymatic saccharification and biohydrogen production. A reducing sugar concentration of 13.18 g/L was acquired when wheat straw was treated with ultrasound and dilute alkali cooking (RU). The sequential fermentative hydrogen yield of the substrate RU was 133.6 mL/g total solids (TS), which was 5.6-fold larger than that of the raw material (23.9 mL/g TS). The study confirmed that ultrasound combined with dilute alkali cooking was an effective method, which not only provided significant guideline for improving biohydrogen production but also presented helpful direction for the efficient pretreatment of other lignocellulosic biomass.  相似文献   

15.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

16.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

17.
《能源学会志》2020,93(5):1960-1969
Presently, sugarcane bagasse (SB) and oat hulls (OH) have a distinctive potential as a renewable source of biomass, due to its global availability, which is advantageous for producing liquid and gaseous fuels by thermochemical processes. Thermo-Catalytic Reforming (TCR) is a pyrolysis based technology for generating energy vectors (char, bio-oil and syngas) from biomass wastes. This work aims to study the conversion of SB and OH into fuels, using TCR in a 2 kg/h continuous pilot-scale reactor at different pyrolysis temperatures. The pyrolysis temperatures were studied at 400, 450 and 500 °C, while the subsequent reforming temperature remained constant at 500 °C. The bio-oil contained the highest calorific value of 33.4 and 33.5 MJ/kg for SB and OH, respectively at 500 °C pyrolysis temperature, which represented a notable increase compared to the raw material calorific value of SB and OH (16.4 and 16.0 MJ/kg, respectively), this was the result of deoxygenation reactions occurring. Furthermore, the increment of the pyrolysis temperature improved the water content, total acid number (TAN), viscosity and density of the bio-oil. The syngas and the biochar properties did not change significantly with the increase of the pyrolysis temperature. In order to use TCR bio-oil as an engine fuel, it is necessary to carry out some upgrading treatments; or blend it with fossil fuels if it is to be used as a transportation fuel. Overall, TCR is a promising future route for the valorisation of lignocellulosic residues to produce energy vectors.  相似文献   

18.
For renewable hydrogen to be a significant part of the future decarbonized energy and transportation sectors, a rapid and massive build-out of hydrogen production facilities will be needed. This paper describes a geospatial modeling approach to identifying the optimal locations for renewable hydrogen fuel production throughout the state of California, based on least-cost generation and transport. This is accomplished by (1) estimating and projecting California renewable hydrogen demand scenarios through the year 2050, (2) identifying feedstock locations, (3) excluding areas not suitable for development, and (4) selecting optimal site locations using commercial geospatial modeling software. The findings indicate that there is a need for hundreds of new renewable hydrogen production facilities in the decades preceding the year 2050. In selecting sites for development, feedstock availability by technology type is the driving factor.  相似文献   

19.
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet, the full range of environmental consequences of large-scale hydrogen production remains unclear. Here, prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen, including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework, known human health burdens, the impacts of the world economy, and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary, with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ~2 to ~5 USD/kg hydrogen), while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ~7 to ~3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.  相似文献   

20.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号