共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2020,45(38):19642-19663
In spite of significant achievements in alkaline exchange membrane fuel cells (AEMFCs) in recent years, they are still lagging behind proton exchange membrane fuel cells (PEMFCs) due to performance instability. Among the relevant operational parameters of AEMFC, the researchers have found that poor water management within the cell was the main reason for failure of the system. In the past five years, numerous modeling and experimental works were reported proposing different strategies to improve water management of AEMFC. With proper water management, the achievable power output in AEMFCs is comparable with that of PEMFCs or even more. Efforts have to be continued, but AEMFCs can become a strong competitor in the market place. This review paper discusses the strategies and developments impacting water management of AEMFCs providing knowledge source for upcoming studies. 相似文献
2.
《International Journal of Hydrogen Energy》2021,46(78):38603-38611
Developing cheap and highly durable non-noble metal catalysts for water electrolysis to sustainably produce hydrogen as alternatives to platinum-based catalysts is essential. Herein, we report graphene-encapsulated NiMo alloys as acid-stable non-noble metal catalyst electrodes. The graphene-encapsulated NiMo cathode showed a highly stable performance in the potential cycling test (10,000 cycles) from 0 to 5.0 A cm−2 and 100 h of durability at a 2.2 V constant cell voltage. A balance between catalytic activity and corrosion in acidic environments was achieved by tuning the number of N-doped graphene layers. Through their application in a full-cell PEM-type water electrolyzer, we verify that noble metal catalysts can be replaced by non-noble metal catalysts. Such cheap acid-stable non-noble metal electrodes have promising practical applications in PEM-type water electrolysis. 相似文献
3.
《International Journal of Hydrogen Energy》2019,44(39):22160-22172
It has been well recognized that cold start is one of the key issues of proton exchange membrane fuel cell (PEMFC) used as the engine of vehicles. Coolant circulation is usually launched synchronously with the fuel cell during cold start to avoid sudden large temperature variation, which greatly increases the cell thermal mass, lowers the heating rate, and worsens the cell performance. Considering the flow and heat transfer of coolant circulation, a three-dimensional, transient, multi-disciplinary model for cold start is built up. The numerical results agree reasonably well with experimental data, indicating that the model can be used for the investigation of PEMFC cold start processes. The analysis of circulation parameter effects shows that increasing the coolant flow rate or coolant tank capacity has little influence on the cell voltage, but will increase the non-uniformity of temperature distribution along flow direction. At lower start-up temperature, this non-uniformity is more obvious. With higher coolant flow rate, although the distribution of current density becomes more evenly, the ice formation amount increases and its distribution and location are greatly affected. 相似文献
4.
《International Journal of Hydrogen Energy》2022,47(95):40368-40378
Two-dimensional siloxene sheets were superficially coated with cobalt chalcogenides to optimize interfacial properties for broad applications in the field of catalysis. These catalytic composites were investigated for electrochemical water splitting in an alkaline electrolyte medium. The synthesis of siloxene sheet-cobalt chalcogenides composites was confirmed by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, adsorption studies, and X-ray photoelectron spectroscopy analyses. Potentiometric and impedimetric experiments were performed to understand the inherent electrocatalytic activity of the developed catalysts. Variations in the onset potential and overpotential at a constant current density of ±10 mA/cm2 for hydrogen and oxygen evolution reactions—HER and OER, respectively—were evaluated with respect to a reversible hydrogen electrode (RHE). The catalysts exhibit superior current and catalytic activity due to interfacial kinetics, retaining lower Tafel slopes of ~30 mV/dec for the OER and HER; they also exhibited improved, long-term stability for 12 h, indicating potential utility in commercial applications. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(41):21068-21086
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems. 相似文献
6.
《International Journal of Hydrogen Energy》2022,47(40):17683-17698
In order to make proton exchange membrane fuel cell vehicles more marketable, not only should costs be reduced, but service life should also be further increased. Important factors determining the expected service life are the deformation and the stress distribution within the carbon paper gas diffusion layer (GDL), on which the rib structure of the bipolar plates (BPP) has a significant impact. Against this background, a new analytical method is firstly developed to predict the deformation and stress distribution within the GDL, due to compression by the ribs, with high accuracy and low computing resources. Based on the analytical method, a new parabolic rib geometry is then proposed, which can significantly reduce the maximum normal and shear stresses occurring within the GDL, thus reducing the possibility of its mechanical damage. The optimized rib design provides guidance for designing and processing commercial fuel cell BPPs. 相似文献
7.
《International Journal of Hydrogen Energy》2021,46(70):34550-34564
Alkaline water electrolysis is the most promising approach for the industrial production of green hydrogen. This study investigates the dynamic operational characteristics of an industrial-scale alkaline electrolyzer with a rated hydrogen production of 50 m3/h. Strategies for system control and equipment improvement in dynamic-mode alkaline electrolytic hydrogen production are discussed. The electrolyzer can operate over a 30%–100% rated power load, thereby facilitating high-purity (>99.5%) H2 production, competitive DC energy efficiency (4.01–4.51 kW h/Nm3 H2, i.e., 73.1%–65.0% LHV), and good gas–liquid fluid balance. A safe H2 content of 2% in O2 (50% LFL) can be guaranteed by adjusting the system pressure. In transient operation, the electrolyzer can realize minute-level power and pressure modulation with high accuracy. The results confirm that the proposed alkaline electrolyzer can absorb highly fluctuating energy output from renewables because of its capability to operate in a dynamic mode. 相似文献
8.
《International Journal of Hydrogen Energy》2019,44(23):12033-12042
Understanding the icing characteristics of proton-exchange membrane fuel cells (PEMFCs) is essential for optimizing their cold-start performance. This study examined the effects of start-up temperature, current density, and microporous layer (MPL) hydrophobicity on the cold-start performance and icing characteristics of PEMFCs. Further, the cold-start icing characteristics of PEMFCs were studied by testing the PEMFC output voltage, impedance, and temperature changes at different positions of the cathode gas diffusion layer. Observation of the MPL surface after cold-start failure allowed determination of the distribution of ice formation at the catalytic layer/MPL interface. At fuel cell temperatures below 0 °C, supercooled water in the cell was more likely to undergo concentrated instantaneous freezing at higher temperatures (−4 and −5 °C), whereas the cathode tended to freeze in sequence at lower temperatures (−8 °C). In addition, a more hydrophobic MPL resulted in two successive instantaneous icing phenomena in the fuel cell and improved the cold-start performance. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(95):40379-40390
TiO2 quantum dots-sensitized Cu2S (Cu2S/TiO2) nanocomposites with varying concentration of TiO2 QDs are synthesized via a facile two-stage hydrothermal-wet impregnation method. X-ray diffraction analysis confirms the formation of Cu2S and TiO2with chalcocite and anatase phases, respectively. The observed shoulder-like absorption peaks indicate the UV–visible light-driven properties of the composite. Morphological analysis reveals that the fabricated Cu2S/TiO2 composite consists of Cu2S with a nano rod-like shape (average length and width of ~856 and ~213 nm, respectively) and nanosheets-like structures (average length and width of ~283 and ~289 nm, respectively), whereas the TiO2 is formed as quantum dots with a size range of 8.2 ± 0.4 nm. Chemical state analysis shows the presence of Cu+, S2?, Ni2+, and O2? in the nanocomposite. The H2 evolution rate over the optimized photocatalyst is found to be ~45.6 mmol h?1g?1cat under simulated solar irradiation, which is around 5 and 2.4-fold higher than that of the pristine TiO2 and Cu2S, respectively. Continuous H2 production for 30 h is achieved during time-on-stream experiments, demonstrating the excellent stability and durability of the Cu2S/TiO2 photocatalyst for large-scale applications. 相似文献
10.
Hydrogen-rich syngas production by gasification of Urea-formaldehyde plastics in supercritical water
《International Journal of Hydrogen Energy》2021,46(71):35121-35129
Supercritical water is a promising medium to convert plastics into hydrogen and other recyclable products efficiently. In previous research, supercritical water gasification characteristics investigations focus on thermoplastics instead of thermoset plastics due to its chemical, thermal and mechanical stability. Urea-formaldehyde (UF) plastics were selected as a typical kind of thermoset plastics for investigation in this paper and quartz tubes were used as the reactor in order to avoid the potential catalytic effect of metal reactor wall. Conversion characteristic were studied and the influence of different operating parameters such as temperature, reaction time, feedstock mass fraction and pressure were investigated respectively. The molar fraction of hydrogen could reach about 70% in 700 °C. Products in gas phase and solid phase were analyzed, and properties, chemical structures and inhibition mechanism of thermoset plastics was analyzed after comparing with polystyrene (PS) plastics. The result showed that increase of high temperature and long reaction time could promote gasification process, meanwhile the increase in the feedstock mass fraction would result in suppression of the gasification process. Finally, kinetic study of UF was carried out and the activation energy and pre-exponential factor of the Arrhenius equation were calculated as 30.09 ± 1.62 kJ/mol and 0.1199 ± 0.0049 min−1, respectively. 相似文献
11.
《International Journal of Hydrogen Energy》2021,46(65):32871-32881
Photocatalysts can be used both for air cleaning and solar energy harvesting through water splitting. However, pure TiO2 photocatalysts are often inefficient and therefore co-catalysts are needed to improve the yield. To achieve this goal, we prepared TiO2 and deposited Pt, Ir and Ru co-catalysts on its surface. Two base TiO2 nanoparticles were used: P25 and rutile TiO2 synthesized via hydrothermal method. Co-catalysts were deposited by wet impregnation technique using single element and a combination of two elements (Pt and Ir or Pt and Ru), followed by annealing in either air or H2/Ar. Annealing in reducing atmosphere increased the photocatalytic activity of oxidation of isopropanol compared to annealing in air. We demonstrated a clear influence of the co-catalysts on the photocatalytic degradation of isopropanol and on electrochemical water-splitting reaction. The platinum-containing samples showed the best HER activity. 相似文献
12.
《International Journal of Hydrogen Energy》2021,46(69):34413-34437
The present study aims to assess the proton conductivities of the most investigated proton exchange membranes (PEMs) used in PEM fuel cells (PEMFCs). Specifically, PEMs are analyzed for their use in anhydrous fuel cells and proton conductivity upper bounds were provided for them. Considering the direct relationship between proton conductivity and temperature, an upper bound is presented. Based on the obtained upper bounds, suitable membranes for high-temperature performance are determined, and the average range of proton conductivity for each polymer group is discussed. By comparing the available proton conductivity data with upper bound, it was demonstrated that some of poly (ionic liquid)s have provided the highest proton conductivities, however aromatic polymers such as polybenzimidazole (PBI) are found more suitable choices for application at anhydrous conditions and high temperatures. The proton conductivity upper bound for anhydrous PEMs demonstrates the availability of promising polymer options for the deployment of anhydrous fuel cells. 相似文献
13.
《International Journal of Hydrogen Energy》2019,44(54):28996-29001
Long-term chemical stability of proton exchange membranes in polymer electrolyte fuel cells (PEFCs) is an important issue for widespread commercialization. Here, we report on the chemical stability of a membrane-electrode assembly with a 7 μm thick pore-filling membrane (porous substrate filled with high ion exchange capacity perfluorosulfonic acid (PFSA) polymer) using an open-circuit voltage hold test. The very thin pore-filling membrane shows comparable chemical durability to Nafion 211. Interestingly, the pore-filling membrane shows a different degradation behavior from Nafion 211 due to the use of chemically and mechanically stable porous substrate, with no thickness change and little amounts of fluorine leakages are observed in the pore-filling membrane compared to membrane thinning and large amounts of fluorine leakage in Nafion 211. The thin pore-filling membrane shows promise for application in PEFCs, as it balances high fuel cell performance at high temperature and low relative humidity with high chemical durability. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(31):14294-14303
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study. 相似文献
15.
《International Journal of Hydrogen Energy》2020,45(38):19267-19279
Evolution of highly durable electrocatalyst for oxygen reduction reaction (ORR) is the most critical barrier in commercializing polymer electrolyte membrane fuel cell (PEMFC). In this work, Pt deposited N-doped mesoporous carbon derived from Aloe Vera is developed as an efficient and robust electro catalyst for ORR. Due to its high mesoporous nature, the aloe vera derived carbon (AVC) play a very vital role in supporting Pt nanoparticles (NPs) with N-doping. After doping N into AVC, more defects are created which facilitates uniform distribution of Pt NPs leading to more active sites towards ORR. Pt/N-AVC shows excellent ORR activity when compared with commercial Pt/C and showing a half wave potential (E1/2–0.87 V Vs. RHE) and reduction potential (Ered ~ 0.72 V Vs. RHE) towards ORR. Even after 30,000 potential cycles, Pt/N-AVC shows in its E1/2 only ~5 mV negative shift and lesser agglomeration of Pt NPs is seen in the catalyst. In membrane electrode assembly (MEA) fabrication, Pt/N-AVC as a cathode catalyst in a PEMFC fixture and performance were studied. The Pt/N-AVC shows good performance, which proves the potential application of this naturally available bio derived carbon, which serves as an excellent high durable support material in PEMFC. All these features show that the Pt/N-AVC is the most stable, efficient and suitable candidate for ORR catalyst. 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(60):31745-31756
The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430 °C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. In situ Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H2, CO2, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log A (s−1) = 1.6 ± 0.20 and EA = 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log A (s−1) = 12.56 ± 1.96 and EA = 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(90):38134-38154
Considering the high calorific value and low-carbon characteristics of hydrogen energy, it will play an important role in replacing fossil energy sources. The production of hydrogen from renewable energy sources for electricity generation and electrolysis of water is an important process to obtain green hydrogen compared with classic low-carbon hydrogen production methods. However, the challenges in this process include the high cost of liquefied hydrogen and the difficulty of storing hydrogen on a large scale. In this paper, we propose a new route for hydrogen storage in metals, namely, electricity generation from renewable energy sources, electrolysis to obtain metals, and subsequent hydrogen production from metals and water. Metal monomers facilitate large-scale and long-term storage and transportation, and metals can be used as large-scale hydrogen storage carriers in the future. In this technical route, the reaction between metal and water for hydrogen production is an important link. In this paper, we systematically summarize the research progress, development trend, and challenges in the field of metal to hydrogen production. This study aim to aid in the development of this field. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(51):21803-21816
In this paper a dynamic membrane electrode assembly water transport model, based on the Finite Volume Method, is presented. The purpose of this paper is to provide an accessible and reproductible model capable of real time simulation. To this aim, a detailed explanation is provided regarding the equations and methods used to compute the physical-based fuel cell model. Additionally, the model is purposely developed using basic code (on Matlab?), to not be limited to a single programming language. Two phase water transport through multi-gaseous porous media (electrodes), interfacial transport, as well as diffusion, convection, and electro-osmosis within the polymer are considered. The main novelty relies in the restructuring of all equations into a single implicit system, which can iteratively be resolved through LU decomposition. This computationally efficient method allows the model to be capable of real-time simulation, by displaying the membrane water content profile evolution on a 3D figure. For nominal PEMFC operating conditions, a dry membrane reaches 35% of its final water concentration value after 2 s, and fully converges after 20 s. The final water content profile displays an 18% gradient (9 and 11 molecules per sulfonic acid sites on the anode and cathode sides, respectively). To calibrate and validate this model, mass transfer (flowmeter) and electrical (ohmmeter) methods have been applied. 相似文献
19.
Shoki Kosai Shiho Fujimura Shugo Nishimura Shunsuke Kashiwakura Kei Mitsuhara Masaru Takizawa Eiji Yamasue 《International Journal of Hydrogen Energy》2021,46(11):7722-7732
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation. 相似文献
20.
Pai Peng Shenghui Guo Linhu Li Hui Jin Zhiwei Ge Liejin Guo 《International Journal of Hydrogen Energy》2021,46(53):26834-26847
In the offshore petroleum industry, polymer-containing oily sludge (PCOS) hinders oil extraction and causes tremendous hazards to the marine ecological environment. In this paper, an effective pretreatment method is proposed to break the adhesive structure of PCOS, and the experiments of supercritical water gasification are carried out under the influencing factors including residence time (5–30 min) and temperature (400–750 °C) in batch reactors. The increase of time and temperature all show great promoting effects on gas production. Polycyclic aromatic hydrocarbons, including naphthalene and phenanthrene, are considered as the main obstacles for a complete gasification. Carbon gasification efficiency (CE) reaches maximum of 95.82% at 750 °C, 23 MPa for 30 min, while naphthalene makes up 70% of the organic compounds in residual liquid products. The highest hydrogen yield of 19.79 (mol H2/kg of PCOS) is observed in 750 °C for 25 min. A simplified reaction pathway is presented to describe the gaseous products (H2, CO, CO2, CH4). Two intermediates are defined for describing the reaction process bases on the exhaustive study on organic matters in residual liquid products. The results show that the calculated data and the experimental data have a high degree of fit and tar formation reaction is finished within 10 min. 相似文献