首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

2.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

3.
The transport sector is considered as one of the sectors producing high carbon emissions worldwide due to the use of fossil fuels. Hydrogen is a non-toxic energy carrier that could serve as a good alternative to fossil fuels. The use of hydrogen vehicles could help reduce carbon emissions thereby cutting down on greenhouse gases and environmental pollution. This could largely be achieved when hydrogen is produced from renewable energy sources and is easily accessible through a widespread network of hydrogen refuelling stations. In this study, the techno-economic assessment was performed for a wind-powered hydrogen refuelling station in seven cities of South Africa. The aim is to determine the optimum configuration of a hydrogen refuelling station powered by wind energy resources for each of the cities as well as to determine their economic viability and carbon emission reduction capability. The stations were designed to cater for 25 hydrogen vehicles every day, each with a 5 kg tank capacity. The results show that a wind-powered hydrogen refuelling station is viable in South Africa with the cost of hydrogen production ranging from 6.34 $/kg to 8.97 $/kg. These costs are competitive when compared to other costs of hydrogen production around the world. The cities located in the coastal region of South Africa are more promising for siting wind powered-hydrogen refuelling station compared to the cities located on the mainland. The hydrogen refuelling stations could reduce the CO2 and CO emissions by 73.95 tons and 0.133 tons per annum, respectively.  相似文献   

4.
When hydrogen fueling stations were constructed first time in Korea in 2006, there were no standards for hydrogen fueling stations. Hence the CNG (Compressed Natural Gas) station codes were temporarily adopted. In last three years, from 2006 to 2009, the studies for the development of hydrogen fueling station standards were carried out, with the support of the Korean government. In this study, three research groups cooperated to develop optimized hydrogen fueling station codes through risk analysis of hydrogen production and filling systems. Its results were integrated to develop the codes. In the first step to develop the codes, the standards for CNG stations and hydrogen fueling station were compared with each other and analyzed. By referring to foreign hydrogen fueling station standards, we investigated the potential problems in developing hydrogen fueling station codes based on the CNG station standards. In the second, the results of the high-pressure hydrogen leakage experiment were analyzed, and a numerical analysis was performed to establish the safety distance from the main facilities of a hydrogen fueling station to the protection facilities. In the third, HAZOP (Hazard and Operability) and FTA (Fault Tree Analysis) safety assessments were carried out for the on-site and off-site hydrogen fueling stations—currently being operated in Korea— to analyze the risks in existing hydrogen fueling stations. Based on the study results of the above three groups, we developed one codes for off-site type hydrogen fueling stations and another codes for on-site type hydrogen fueling stations. These were applied from September 2010.  相似文献   

5.
A detailed economics model of hydrogen infrastructure in California has been developed and applied to assess several potential fuel cell vehicle deployment rate and hydrogen station technology scenarios. The model accounts for all of the costs in the hydrogen supply chain and specifically examines a network of 68 planned and existing hydrogen stations in terms of economic viability and dispensed hydrogen cost. Results show that (1) current high-pressure gaseous delivery and liquid delivery station technologies can eventually be profitable with relatively low vehicle deployment rates, and (2) the cost per mile for operating fuel cell vehicles can be lower than equivalent gasoline vehicles in both the near and long term.  相似文献   

6.
In the last couple of decades, there has been a growing concern in what effects fossil fuels are having on the environment, resulting in governments and governing organizations issuing stringent emission standards in an effort to curve their environmental damage. To meet these new standards, the transportation industry has been conducting research into alternative fuels, such as hydrogen, but one critical problem utilizing hydrogen is that there is almost no infrastructure. A network of hydrogen refueling stations similar to modern gasoline stations will be required to be constructed to meet future demand. The hydrogen refueling station model was created to aid in designing hydrogen facilities, thus accelerating their development while reducing design cost. A model was created using Simulink consisting of an electrolyzer that generates hydrogen, a compressor, numerous storage tanks, a dispensing unit that transfers hydrogen, and a vehicle component that consumes hydrogen fuel. The model was validated using data from existing hydrogen refueling stations, and the data obtained from testing the previous version of the hydrogen refueling station model to determine model accuracy and if the model has improved. The model has demonstrated that it can produce reasonable results for a station's performance and has improved compared to the previous version.  相似文献   

7.
Creating a distribution network and establishing refueling stations arises as an important problem in order to meet the refueling needs of hydrogen fuel cell vehicles. In this study, a multi-objective and multi-period hydrogen refueling station location problem that can take into account long-term planning decisions is proposed. Firstly, single objective mathematical models are proposed for the problem by addressing the cost, risk and population convergence objectives. Afterwards, a goal programming model is proposed and the results that will arise when three objectives are taken into consideration at the same time are examined. A risk analysis approach applied for each location alternative is considered in order to handle risk concerns about the hydrogen refueling station settlement. A case study is conducted in Adana, one of the crowded cities in Turkey, to determine the long-term location network plan. Covered population, operational risk and earthquake risks are used as input of the risk analysis method. The case study results show that the goal programming model covers the area with 77 hydrogen refueling stations by different types and capacities during the years from 2020 to 2030. In addition, a computational study is carried out with different alternative scenarios (different number of consumption nodes and all parameters in the model). The computational study results show that the highest deviations from the optimal solution on the model are observed in the distances between consumption nodes and targeted service area parameters which affect about 50% of absolute deviations on average. According to results, the proposed approach selects the station location suitable for the expected changes over the years.  相似文献   

8.
Fuel cell vehicles (FCVs) are expected to be commercially available on the world market in 2015, therefore, introducing hydrogen-refueling stations is an urgent issue to be addressed. This paper proposes deployment plan of hydrogen infrastructure for the success of their market penetration in the Northeastern United States. The plan consists of three-timeline stages from 2013 to 2025 and divides the designated region into urban area, suburban area and area adjacent to expressway, so that easy to access to hydrogen stations can be realized. Station is chosen from four types of stations: off-site station, urban-type on-site station, suburban-type on-site station and portable station, associated with growing demand. In addition, on-site station is used as hydrogen production factory for off-site station to save total investment. This deployment plan shows that 83% of urban residents can reach station within 10 min in 2025, and that more than 90% people especially in four major cities: Boston, New York City, Philadelphia, and Washington, D.C. can get to station within 10 min by Geographic Information System (GIS) calculation.  相似文献   

9.
The uncertainty and cost of changing from a fossil-fuel-based society to a hydrogen-based society are considered to be extensive obstacles to the introduction of fuel cell vehicles (FCVs). The absence of existing profitable refueling stations has been shown to be one of the major barriers. This paper investigates methods for calculating an optimal transition from a gasoline refueling station to future methane and hydrogen combined use with an on site small-scale reformer for methane. In particular, we look into the problem of matching the hydrogen capacity of a single refueling station to an increasing demand. Based on an assumed future development scenario, optimal investment strategies are calculated. First, a constant utilization of the hydrogen reformer is assumed in order to find the minimum hydrogen production cost. Second, when considerations such as periodic maintenance are taken into account, optimal control is used to concurrently find both a short term equipment variable utilization for one week and a long term strategy. The result is a minimum hydrogen production cost of $4–6/kg, depending on the number of reinvestments during a 20 year period. The solution is shown to yield minimum hydrogen production cost for the individual refueling station, but the solution is sensitive to variations in the scenario parameters.  相似文献   

10.
Since 2003, the National Fuel Cell Research Center at the University of California, Irvine (UCI) has operated the first U.S. publicly accessible hydrogen refueling station (HRS). During this period, the UCI HRS supported all manufacturers in the early, pre-commercialization years of the fuel cell electric vehicle (FCEV). This paper describes and analyzes the performance of the UCI HRS during the first five years of FCEV commercialization, over which time the station has dispensed the most hydrogen daily in the California network. The station performance is compared to aggregate data published by NREL for all U.S. HRSs. Using the Hydrogen Delivery Scenario Analysis Model, typical daily refueling profiles are analyzed to determine the effect on HRS design. The results show different daily refueling profiles could substantially affect HRS design and ultimately the cost of hydrogen. While technical issues have been reduced, the compressor, dispenser, and fueling rate are areas for improvement.  相似文献   

11.
The present paper analyzes an innovative energy system based on a hydrogen station, as the core of a smart energy production center, where the produced hydrogen is then used in different hydrogen technologies adopted and installed nearby the station. A case study analysis has been proposed and then investigated, with a station capacity of up to 360 kg of hydrogen daily generated, located close to a University Campus. A hydrogen mobility network has been included, composed of a fuel cell hydrogen fleet of 41 vehicles, 43 bicycles, and 28 fuel cell forklifts. The innovative proposed energy system needs to meet also a power and heat demand for a student housing 5400 m2 building of the University Campus. The performance of the system is presented and investigated, including technical and economic analyses, proposing a hydrogen refueling station as an innovative alternative fuel infrastructure, called Multi-modular Hydrogen Energy Station, marking its great potential in future energy scenarios.  相似文献   

12.
A hydrogen station is one that fills or stores the hydrogen, which is critical to the commercial development of hydrogen energy and fuel cell vehicle industry. Therefore, its location planning becomes an important issue. Similar to the electric vehicle (EV) charging station's planning, several factors are considered including the location, the demand of the fuel, the driving distance, etc. In this paper, multiple data sources are applied to the site selection model, including the existing petrol-refueling station network data, geographic information system (GIS) data, population data and regional economic data. Based on the operation of the genetic algorithm, combined with the idea of the greedy algorithm and the annealing algorithm, we propose a multi-algorithm hybrid solution, which not only can avoid local optimal, but also can converge quickly. On the basis of the site selection scheme of the hydrogen station in California, we have optimized the location scheme in Beijing. Finally, we present the feasibility proposals for hydrogen station location in Beijing, including the appropriate number of hydrogen stations in different regions, the reasonable coverage distance of hydrogen stations, etc. Due to the huge development prospects for hydrogen energy and the urgent need to reduce the construction cost of hydrogen stations in China, this research can quickly optimize the location of the hydrogen station and further explore potential mathematical relationships, which has certain social significance and economic benefits.  相似文献   

13.
Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.  相似文献   

14.
The popularity of hydrogen refueling stations in China is hindered by unreasonable site selection and high initial costs. Built gas stations with large consumer groups and reasonable locations can be expanded into oil-hydrogen combined stations. which can effectively reduce construction costs and approval complexity, improve hydrogenation infrastructure and reduce hydrogenation costs. Taking Chinese social-economic environment into consideration, this paper created an optimal site selection decision framework for oil-hydrogen combined stations to achieve the goal of reducing construction costs, transportation costs and carbon emissions in the whole process. A two-stage criteria system including veto criteria system and evaluation criteria system was established, and fuzzy analytic hierarchy process (AHP) method and TOmada De decis ão Interativa Multicritério (TODIM) method were utilized to determine the criteria weight and obtain the ranking of alternatives respectively. Finally, a case study was conducted and the most suitable gas station site for the construction of oil-hydrogen combined station was determined. Moreover, the economics of the several hydrogen sources were discussed from the perspective of best site selected, it is concluded that hydrogen from natural gas or coal is still the best hydrogen source for oil-hydrogen combined stations.  相似文献   

15.
South Korea is pushing for advancing the emergence of the hydrogen economy in order to reduce greenhouse gas emissions and promote economic growth. In this regard, a significant expansion of hydrogen charging stations is scheduled, but one of the biggest obstacles to this is the public acceptance of building a hydrogen fueling station near their residences. This article collected the data on the public acceptance toward building a hydrogen fueling station on a nine-point scale from a survey of 1000 people across the country, and analyzed the factors affecting public acceptance employing the ordered probit model. The respondents' approval rate for building a hydrogen fueling station near their residences (48.0%) was slightly higher than twice the opposition rate (23.0%). However, the sum of opposition (23.0%) and neutrality or indifference (29.0%) exceeded half of the total respondents, suggesting that the government's additional efforts were needed to improve acceptance. While some factors positively influenced the public acceptance, others affected it negatively. The various implications that can be obtained from these findings for building hydrogen fueling stations are discussed.  相似文献   

16.
Interest in hydrogen as a transportation fuel is growing in Shanghai. Shell Hydrogen, Tongji University, and the City of Shanghai plan to construct a network of refueling stations throughout the city to stimulate fuel cell vehicle and bus deployment. The purpose of this paper is to (1) examine the near-term costs of building hydrogen stations of various types and sizes in Shanghai and (2) present a flexible cost analysis methodology that can be applied to other metropolitan regions.The costs for four different station types are analyzed with respect to size and hydrogen production method. These costs are compared with cost estimates of similar stations built in California. Based on the hydrogen station cost analysis conducted here, we have found that hydrogen costs ($/kg) vary considerably based on station type and size. On-site hydrogen production from methane or methanol results in the lowest cost per kg. The higher cost of truck-delivered hydrogen from industrial sites in Shanghai vs. California is mainly due to feedstock costs differences. Electrolyzer stations yield the highest hydrogen cost.  相似文献   

17.
Zero-emission vehicle (ZEV) adoption is one of the critical solutions to decarbonize the transportation sector. Among the ZEV fleet in the US, battery electric vehicles (BEV) have been leading the market penetration. However, hydrogen fuel cell electric vehicles (FCEV) have also been increasingly adopted in recent years. Although both technologies have challenges with infrastructure, unlike BEVs that have multiple venues for charging (home, work or public), FCEVs rely solely on fueling at public hydrogen stations, and their availability is a significant factor before the vehicle purchase. Therefore, for the success of FCEV adoption, a need to monitor and understand the driver satisfaction of these stations is extremely critical. This research project introduces a quantitative-qualitative approach for continuous monitoring of hydrogen stations based on the station utilization patterns and to assess their preferability based on driver experiences. To illustrate a proof-of-concept, we collected the hourly utilization data of all the hydrogen fueling stations in California for three months. The time-series data was used to develop a capacity-independent term called “Normalized Relative Utilization Index” (NRUI) that encapsulates the utilization pattern of each station to a single metric. We spatially regressed this metric over the number of FCEVs present in the neighborhood to deduce the relationship. We designed a survey to obtain the refueling experiences of FCEV drivers, where about 100 participants responded with their station preferences. Their answers were used to validate the quantitative approach and identify a “Satisfactory Utilization Range” (SUR) of stations which are preferred by most drivers. Though this project illustrates the analysis of data collected over a small period, this approach is easily scalable with new station installations and can be implemented as a continuous monitoring system with real-time station utilization data. We believe this demand-focused approach could complement the existing supply-side monitoring methods on station performance to provide a smoother fueling experience to drivers. We are also releasing the hourly station capacity dataset that was collected as a part of this study to the research community.  相似文献   

18.
The present work sheds light on the green hydrogen future in Morocco. A detailed techno-economic assessment and evaluation of a hydrogen refuelling station powered by an on-grid photovoltaic system are presented and discussed. This station is designed to supply the fleet of taxis in a Moroccan city by assuming different scenarios to replace the current taxi system with fuel-cell electric vehicles. A model is proposed to estimate the daily demand for hydrogen, which is used to determine the sizing of the station's components. An economic analysis is then conducted to calculate the cost of hydrogen production. The technical results demonstrate that about 152 kg/day is required to supply the total fleet, while only 30.4 kg/day is enough to provide 20%. It is also found that the costs of hydrogen produced are inversely proportional to the capacity of the hydrogen refuelling station, and the hydrogen cost is about 9.18 $/kg for the larger station and 12.56 $/kg for the smaller one. The proposed system offers an attractive solution to enhance the country's development and reduce the consumption of hydrocarbon fuels.  相似文献   

19.
Hydrogen has the potential to become a powerful energy vector with different applications in many sectors (industrial, residential, transportation and other applications) as it offers a clean, sustainable, and flexible alternative. Hydrogen trains use compressed hydrogen as fuel to generate electricity using a hybrid system (combining fuel cell and batteries) to power traction motors and auxiliaries. This hydrogen trains are fuelled with hydrogen at the central train depot, like diesel locomotives. The main goal of this paper is to perform a techno-economic analysis for a hydrogen refuelling stations using on-site production, based on PEM electrolyser technology in order to supply hydrogen to a 20 hydrogen-powered trains captive fleet. A sensitivity analysis on the main parameters will be performed as well, in order to acquire the knowledge required to take any decisions on implementation regarding electricity cost, hydrogen selling price, number of operation hours and number of trains for the captive fleet.The main methodology considers the evaluation of the project based on the Net Present Value calculation and the sensitivity analysis through standard method using Oracle Crystal Ball. The main result shows that the use of hydrogen as an alternative fuel for trains is a sustainable and profitable solution from the economic, environmental and safety points of view.The economic analysis concludes with the need to negotiate an electricity cost lower than 50 €/MWh, in order to be able to establish the hydrogen selling price at a rate higher than 4.5€/kg. The number of operating hours should be higher than 4800 h per year, and the electrolyser system capacity (or hydrogen refuelling station capacity) should be greater than 3.5 MW in order to reach a Net Present Value of 7,115,391 € with a Return of Investment set to 9 years. The result of the multiparametric sensitivity analysis for the Net Present Value (NPV) shows an 85.6% certainty that the project will have a positive result (i.e. profitability) (NPV> 0). The two main variables with the largest impact on Net Present Value are the electrolyser capacity (or hydrogen refuelling station capacity) and the hydrogen selling price. Moreover, a margin of improvement (higher NPV) could be reached with the monetization of the heat, oxygen by-product and CO2 emission reduction.  相似文献   

20.
In order for fuel cell vehicles to develop a widespread role in society, it is essential that hydrogen refuelling stations become established. For this to happen, there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow, dispersion and explosion behaviour. In the first phase, homogeneous hydrogen–air mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly, high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure, the hydrogen concentration varied as the inlet airflow changed, depending on the ventilation area of the room, the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data, the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8 to 8.0 mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition, distance from ignition point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号