首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J.K. Kaldellis  D. Zafirakis 《Energy》2007,32(12):2295-2305
The high wind and solar potential along with the extremely high electricity production cost met in the majority of Greek Aegean islands comprising autonomous electrical networks, imply the urgency for new renewable energy sources (RES) investments. To by-pass the electrical grid stability constraints arising from an extensive RES utilization, the adaptation of an appropriate energy storage system (ESS) is essential. In the present analysis, the cost effect of introducing selected storage technologies in a large variety of autonomous electrical grids so as to ensure higher levels of RES penetration, in particular wind and solar, is examined in detail. A systematic parametrical analysis concerning the effect of the ESSs’ main parameters on the economic behavior of the entire installation is also included. According to the results obtained, a properly sized RES-based electricity generation station in collaboration with the appropriate energy storage equipment is a promising solution for the energy demand problems of numerous autonomous electrical networks existing worldwide, at the same time suggesting a clean energy generation alternative and contributing to the diminution of the important environmental problems resulting from the operation of thermal power stations.  相似文献   

2.
Renewable power (photovoltaic, solar thermal or wind) is inherently intermittent and fluctuating. If renewable power has to become a major source of base-load dispatchable power, electricity storage systems of multi-MW capacity and multi-hours duration are indispensable. An overview of the advanced energy storage systems to store electrical energy generated by renewable energy sources is presented along with climatic conditions and supply demand situation of power in Saudi Arabia. Based on the review, battery features needed for the storage of electricity generated from renewable energy sources are: low cost, high efficiency, long cycle life, mature technology, withstand high ambient temperatures, large power and energy capacities and environmentally benign. Although there are various commercially available electrical energy storage systems (EESS), no single storage system meets all the requirements for an ideal EESS. Each EESS has a suitable application range.  相似文献   

3.
Realization of benefits from on-grid distributed generation based on renewable energy sources requires employment of energy storage to overcome the intermittency in power generation by such sources, while accounting for time-varying electricity prices. The objective of this study is to examine the effects of time-varying electricity prices on the performance of energy storage components for an on-grid hybrid renewable energy system (HRES) utilizing an optimized fuzzy logic controller (FLC). To achieve the objective, FLC membership functions are optimized for minimizing the operational cost of the HRES based on weekly and daily prediction of data for grid electricity price, electrical load, and environmental parameters, including wind speed, solar irradiation, and ambient temperature, using shuffled frog leap algorithm. FLC three inputs include (a) grid electricity price, (b) net power flow as the difference between energy produced and energy consumed, and (c) state of charge (SOC) of battery stack. It is confirmed that accounting for grid electricity price has considerable effects on the performance of energy storage components for operation of on-grid HRES, as the weekly and daily optimized FLCs result in less working hours for fuel cell and electrolyzer and less fluctuations in SOC of battery stack.  相似文献   

4.
This paper presents a methodology to minimize the total cost of buying power from different energy producers including renewable energy generations particularly within the context of a microgrid. The proposed idea is primarily based on the controlled operation of a battery energy storage system (BESS) in the presence of practical system constraints coupled with our proposed cost optimization algorithm. The complex optimization problem with constraints has been solved using the well-known concept of dynamic programming. The methodology has been assessed using actual power and price data from six different power generation sites and cost reduction has been calculated for a number of BESSs by varying their energy and power capacities. Twofold benefits of the proposed methodology lie in minimizing the total cost along with the constraint-based efficient operation of the BESS. Simulation results depict that the given power demand at a particular region can be fulfilled properly at all times using a BESS and multiple power generation.  相似文献   

5.
The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored.  相似文献   

6.
This study presents an analysis and assessment study of an integrated system which consists of cryogenic air separation unit, polymer electrolyte membrane electrolyzer and reactor to produce ammonia for a selected case study application in Istanbul, Turkey. A thermodynamic analysis of the proposed system illustrates that electricity consumption of PEM electrolyzer is 3410 kW while 585.4 kW heat is released from ammonia reactor. The maximum energy and exergy efficiencies of the ammonia production system which are observed at daily average irradiance of 200 W/m2 are found as 26.08% and 30.17%, respectively. The parametric works are utilized to find out the impacts of inlet air conditions and solar radiation intensity on system performance. An increase in the solar radiation intensity results in a decrease of the efficiencies due to higher potential of solar influx. Moreover, the mass flow rate of inlet air has a substantial effect on ammonia production concerning the variation of generated nitrogen. The system has a capacity of 0.22 kg/s ammonia production which is synthesized by 0.04 kg/s H2 from PEM electrolyzer and 0.18 kg/s N2 from a cryogenic air separation unit. The highest exergy destruction rate belongs to PEM electrolyzer as 736.2 kW while the lowest destruction rate is calculated as 3.4 kW for the separation column.  相似文献   

7.
Energy storage efficiency is calculated for the solar thermochemical energy transfer system based on ammonia/hydrogen-nitrogen. the calculation for this system involves generation of thermodynamic data not available in the literature by a method in which use is made of the available phase equilibrium measurements together with application of the criterion that the correct value of separation work for a two-phase mixture must be generated internally by degradation of mixing heat. Energy storage efficiencies for ammonia/hydrogen-nitrogen are derived from the generated thermodynamic data and are shown to increase towards unity as the endothermic reaction approaches completion, with efficiencies greater than 0.90 being obtained for reaction extents exceeding 0.60. the validity of the analysis has been tested successfully by comparison between the thermodynamic predictions and experimental data in the form of measurements of the waste heat rejected from a counterflow heat exchanger operated with liquid ammonia feed and ammonia/hydrogen-nitrogen output.  相似文献   

8.
Transition metal hydroxides (TMHs) nanosheets have attracted wide attention in electrochemical energy storage and conversion because of their superior surface area, highly tunable composition, and low cost. Moreover, the self-supported electrode has been extensively studied for electrochemical devices due to its fast electron transfer and mass transport, resulting in enhanced stability and electrode performance. Hence, reviewing the recent advances in self-supported TMHs nanosheets is crucial for developing high-performance electrodes for electrochemical devices. In this review, we first introduce the fundamental properties of TMHs in terms of layered single metal hydroxides (LSHs) and layered double hydroxides (LDHs). Then, we review various synthetic approaches utilized to construct self-supported TMHs nanosheets with tunable compositions and structures. Afterwards, the electrode performance and durability of self-supported TMHs nanosheets in various electrochemical applications (water electrolysis, zinc-air battery and supercapacitor) are comprehensively summarized. Finally, the further perspectives on current challenges and research directions of self-supported TMHs nanosheets towards electrochemical energy storages and conversion applications are proposed.  相似文献   

9.
This paper is a critical review of selected real-world energy storage systems based on hydrogen, ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics, control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible, they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes, hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However, there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally, it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system. Therefore, control systems and energy management strategies are important factors to achieve optimal results, both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems, new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.  相似文献   

10.
Ammonia, being a good source of hydrogen, has the potential to play a significant role in a future hydrogen economy. The hydrogen content in liquid ammonia is 17.6 wt% compared with 12.5 wt% in methanol. Although a large percentage of ammonia, produced globally, is currently used in fertiliser production, it has been used as a fuel for transport vehicles and for space heating. Ammonia is an excellent energy storage media with infrastructure for its transportation and distribution already in place in many countries. Ammonia is produced at present through the well known Haber–Bosch process which is known to be very energy and capital intensive. In search for more efficient and economical process and in view of the potential ammonia production growth forecast, a number of new processes are under development. Amongst these, the electrochemical routes have the potential to substantially reduce the energy input (by more than 20%), simplify the reactor design and reduce the complexity and cost of balance of plant when compared to the conventional ammonia production route. Several electrochemical routes based on liquid, molten salt, solid or composite electrolytes consisting of a molten salt and a solid phase are currently under investigation. In this paper these electrochemical methods of ammonia synthesis have been reviewed with a discussion on materials of construction, operating temperature and pressure regimes, major technical challenges and materials issues.  相似文献   

11.
Utilizing renewable energy resources is one of the convenient ways to reduce greenhouse gas emissions. However, the intermittent nature of these resources has led to stochastic characteristics in the generation and load balancing of the microgrid systems. To handle these issues, an energy management optimization for microgrids operation should be done to urge the minimization of total system costs, emissions, and fuel consumption. An optimization program for decreasing the operational cost of a hybrid microgrid consisting of photovoltaic array, wind unit, electrolyzer, hydrogen storage system, reformer, and fuel cell is presented. Two different methods of producing hydrogen are considered in this study to ensure the effectiveness of the developed methodology. In the microgrid system with high penetration of renewable energy resources, using storage technologies to compensate for the intermittency of these resources is necessary. To evaluate the functioning of the microgrid system, a mathematical model for each source is developed to coordinate the system operation involving energy conversion between hydrogen and electricity. Particle Swarm Optimization Algorithm is utilized to determine the optimum size and operational energy management within the system. It is evident from the results that there is about a 10% reduction in the amount of CH4 consumption in reformer when the electrolyzer was employed in the system. It is observed that the CH4 reduction in summer and fall is higher than other seasons (10.6% and 11.5%, respectively). The reason is that the highest RES production occurs in these seasons during a year. It is also worth mentioning that the electrolyzer technology would play a significant role in decreasing the CH4 consumption in the microgrid system.  相似文献   

12.
Developing green energy solutions has become crucial to society. However, to develop a clean and renewable energy system, significant developments must be made, not only in energy conversion technologies (such as solar panels and wind turbines) but also regarding the feasibility and capabilities of stationary electrical energy storage (EES) systems. Many types of EES systems have been considered such as pumped hydroelectric storage (PHS), compressed air energy storage (CAES), flywheels, and electrochemical storage. Among them, electrochemical storage such as battery has the advantage of being more efficient compared to other candidates, because it is more suitable in terms of the scalability, efficiency, lifetime, discharge time, and weight and/or mobility of the system. Currently, rechargeable lithium ion batteries (LIBs) are the most successful portable electricity storage devices, but their use is limited to small electronic equipment. Using LIBs to store large amounts of electrical energy in stationary applications is limited, not only by performance but also by cost. Thus, a viable battery technology that can store large amounts of electrical energy in stationary applications is needed. In this review, well-developed and recent progress on the chemistry and design of batteries, as well as their effects on the electrochemical performance, is summarized and compared. In addition, the challenges that are yet to be solved and the possibilities for further improvements are explored.  相似文献   

13.
We report a techno-economic modelling for the flexible production of hydrogen and ammonia from water and optimally combined solar and wind energy. We use hourly data in four locations with world-class solar in the Atacama desert and wind in Patagonia steppes. We find that hybridization of wind and solar can reduce hydrogen production costs by a few percents, when the effect of increasing the load factor on the electrolyser overweighs the electricity cost increase. For ammonia production, the gains by hybridization can be substantially larger, because it reduces the power variability, which is costly, due to the need for intermediate storage of hydrogen between the flexible electrolyser and the less flexible ammonia synthesis unit. Our modelling reveals the crucial role in the synthesis of flexibility, which cuts the cost of variability, especially for the more variable wind power. Our estimated near-term production costs for green hydrogen, around 2 USD/kg, and green ammonia, below 500 USD/t, are encouragingly close to competitiveness against fossil-fuel alternatives.  相似文献   

14.
15.
This research investigates an energy management method utilized in a hydrogen and electric hybrid energy storage system (HESS), which is utilized as an ancillary system for renewable energy electricity generation. To suppress the performance degradation of the fuel cell (FC), the newly proposed energy management method deals with main FC degradation causes, such as low humidification and frequent and rapid voltage changes. The entire HESS's performance is demonstrated using the proposed energy management method. In addition, a simulation is conducted to evaluate the proposed energy management method's performance in terms of both suppressing the FC's degradation and ensuring system efficiency. The results of the experiment and simulation show that the proposed energy management method can suppress the FC's harmful working states while maintaining high system efficiency.  相似文献   

16.
We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH3. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]2+/[VO2]+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]2+/[VO2]+ is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]2+/[VO2]+ is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energy storage efficiency of redox flow batteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redox flow batteries. This also opens up new and wider applications of nitrogen-doped carbon.  相似文献   

17.
In this paper, we develop and experimentally investigate a novel hybrid ammonia fuel cell and thermal energy storage system. A molten alkaline salt is utilized for storing thermal energy as well as operating an alkaline electrolyte‐based direct ammonia fuel cell. The specific thermal energy storage capacity of the hybrid system is found to be 133 kJ kg?1 at a temperature of 320°C. Furthermore, the maximum power densities are found to be 2.1±0.1 W m?2 to 2.3±0.1 W m?2 for operating temperatures varying between 220°C and 320°C. The energy efficiency is evaluated as 20.6±0.6%, and the exergy efficiency is determined to be 23.3±0.7% at the peak power density.  相似文献   

18.
The synthesis, characterization, and application of engineered nanomaterials in different fields have opened up new aspects of nanotechnology. Using a simple chemical method, this study describes the synthesis of highly dispersed Cu-doped ZnO nanoparticles with different concentrations of Cu (1, 3, and 5 mM). The nanoparticles thus synthesized were tested for their effect on photo-induced voltage generation, enhancement of storage capacity, and energy conversion efficiency in hybrid photoelectrochemical (PEC) cell. Maximum photovoltage (~680 mV) with highest storage capacity (~53 h) and high energy conversion efficiency (~2.16%) was generated using these nanoparticles when the doping concentration of Cu was 3 mM.  相似文献   

19.
The share of the renewable energy sources (RES) in the global electricity market is substantially increasing as a result of the commitment of many countries to increase the contribution of the RES to their energy mix. However, the integration of RES in the electricity grid increases the complexity of the grid management due to the variability and the intermittent nature of these energy sources. Energy storage solutions such as batteries offer either short-term storage that is not sufficient or longer period storage that is significantly expensive. This paper introduces an energy management approach which can be applied in the case of power and desalinated water generation. The approach is based on mathematical optimization model which accounts for random variations in demands and energy supply. The approach allows using desalination plants as a deferrable load to mitigate for the variability of the renewable energy supply and water and/or electricity demands. A mathematical linear programming model is developed to show the applicability of this idea and its effectiveness in reducing the impact of the uncertainty in the environment. The model is solved for the real world case of Saudi Arabia. The optimal solution accounts for random variations in the renewable energy supply and water and/or electricity demands while minimizing the total costs for generating water and power.  相似文献   

20.
Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号