首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study analyzes a renewable energy‐driven innovative multigeneration system, in which wind and solar energy sources are utilized in an efficient way to generate several useful commodities such as hydrogen, oxygen, desalted water, space cooling, and space heating along with electricity. A 1‐km2 heliostat field is considered to concentrate the solar light onto a spectrum splitter, where the light spectrum is separated into two portions as reflected and transmitted to be used as the energy source in the concentrated solar power (CSP) and concentrated photovoltaics (CPV) receivers, respectively. As such, CSP and CPV systems are integrated. Wind energy is proposed for generating electricity (146 MW) or thermal energy (138 MW) to compensate the energy need of the multigeneration system when there is insufficient solar energy. In addition, multiple commodities, 46 MW of electricity, 12 m3/h of desalted water, and 69 MW of cooling, are generated using the Rankine cycle and the rejected heat from its condenser. Further, the heat generated on CPV cells is recovered for efficient photovoltaic conversion and utilized in the space heating (34 MW) and proton exchange membrane (PEM) electrolyzer (239 kg/h) for hydrogen production. The energy and exergy efficiencies of the overall system are calculated as 61.3% and 47.8%, respectively. The exergy destruction rates of the main components are presented to identify the potential improvements of the system. Finally, parametric studies are performed to analyze the effect of changing parameters on the exergy destruction rates, production rates, and efficiencies.  相似文献   

2.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

3.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

4.
In this paper, a comprehensive study on thermodynamic analysis and assessment, through energy and exergy approaches, is conducted for a multigenerational solar based integrated energy system. The system proposed in this study is based on heliostat solar system integrated with steam turbine. The system is also integrated with seawater reverse osmosis desalination unit and absorption cooling system. The desalination unit operates with energy recovery through the utilization of Pelton turbine. The system produces cooling, heating, fresh water and hydrogen through electrolysis. It is furthermore designed to cover the demand of 4 MW electric power with the production of 1.25 kg/h of hydrogen and 90 kg/s of fresh water. The system advisor model software is applied on a case study for the solar heliostat optimization analysis.  相似文献   

5.
Unlike steam and gas cycles, the Kalina cycle system can utilize low-grade heat to produce electricity with water-ammonia solution and other mixed working fluids with similar thermal properties. Concentrated photovoltaic thermal systems have proven to be a technology that can be used to maximize solar energy conversion and utilization. In this study, the integration of Kalina cycle with a concentrated photovoltaic thermal system for multigeneration and hydrogen production is investigated. The purpose of this research is to develop a system that can generate more electricity from a solar photovoltaic thermal/Kalina system hybridization while multigeneration and producing hydrogen. With this aim, two different system configurations are modeled and presented in this study to compare the performance of a concentrated photovoltaic thermal integrated multigeneration system with and without a Kalina system. The modeled systems will generate hot water, hydrogen, hot air, electricity, and cooling effect with photovoltaic cells, a Kalina cycle, a hot water tank, a proton exchange membrane electrolyzer, a single effect absorption system, and a hot air tank. The environmental benefit of two multigeneration systems modeled in terms of carbon emission reduction and fossil fuel savings is also studied. The energy and exergy efficiencies of the heliostat used in concentrating solar radiation onto the photovoltaic thermal system are 90% and 89.5% respectively, while the hydrogen production from the two multigeneration system configurations is 10.6 L/s. The concentrated photovoltaic thermal system has a 74% energy efficiency and 45.75% exergy efficiency, while the hot air production chamber has an 85% and 62.3% energy and exergy efficiencies, respectively. Results from this study showed that the overall energy efficiency of the multigeneration system increases from 68.73% to 70.08% with the integration of the Kalina system. Also, an additional 417 kW of electricity is produced with the integration of the Kalina system and this justifies the importance of the configuration. The production of hot air at the condensing stage of the photovoltaic thermal/Kalina hybrid system is integral to the overall performance of the system.  相似文献   

6.
In this paper, we propose an integrated system, consisting of a heliostat field, a steam cycle, an organic Rankine cycle (ORC) and an electrolyzer for hydrogen production. Some parameters, such as the heliostat field area and the solar flux are varied to investigate their effect on the power output, the rate of hydrogen produced, and energy and exergy efficiencies of the individual systems and the overall system. An optimization study using direct search method is also carried out to obtain the highest energy and exergy efficiencies and rate of hydrogen produced by choosing several independent variables. The results show that the power and rate of hydrogen produced increase with increase in the heliostat field area and the solar flux. The rate of hydrogen produced increases from 0.006 kg/s to 0.063 kg/s with increase in the heliostat field area from 8000 m2 to 50,000 m2. Moreover, when the solar flux is increased from 400 W/m2 to 1200 W/m2, the rate of hydrogen produced increases from 0.005 kg/s to 0.018 kg/s. The optimization study yields maximum energy and exergy efficiencies and the rate of hydrogen produced of 18.74%, 39.55% and 1571 L/s, respectively.  相似文献   

7.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   

8.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

9.
IGCC多联产总能系统   总被引:5,自引:3,他引:5  
从能源与环境领域渗透交叉层面、化学Yong梯级利用结合的角度综述IGCC多联产总能系统的研究动态;阐述了多联产系统概念与过程机理。分析了系统集成的关键技术及其应用与发展前景。  相似文献   

10.
An innovative system for the polygeneration of dimethyl ether (DME) and electricity was proposed in this paper. The system uses natural gas as the raw material. Polygeneration is sequential, with one-step and once-through DME synthesis. Syngas is made to react to synthesize DME first, and then the residual syngas is sent to the power generation unit as fuel. The exergy analysis from the view of cascade utilization was executed for individual generation and for polygeneration. The analysis results showed that both chemical energy and thermal energy in polygeneration were effectively utilized, and both chemical exergy destruction and thermal exergy destruction in polygeneration were decreased. The cause of the decrease in exergy destruction was revealed. The analysis showed that hydrogen-rich (natural gas-based) polygeneration was as desirable as carbon-rich (coal-based) polygeneration. The energy saving ratio of polygeneration was about 10.2%, which demonstrated that high efficiency natural gas-based polygeneration is attainable, and the cascade utilizations of both chemical energy and thermal energy are key contributors to the improvement of performance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Polygeneration systems enable natural resources to be exploited efficiently, decreasing CO2 emissions and achieving economic savings relative to the conventional separate production. However, their economic feasibility depends on the legal framework. Preliminary design of polygeneration systems for the residential sector based on the last Spanish self-consumption regulations RD 900/2015 and RD 244/2019 was carried out in Zaragoza, Spain. Both regulations were applied to individual and collective installations. Several technologies, appropriate for the energy supply to residential buildings, for example, photovoltaics, wind turbines, solar thermal collectors, microcogeneration engines, heat pump, gas boiler, absorption chiller, and thermal and electric energy storage were considered candidate technologies for the polygeneration system. A mixed integer linear programming model was developed to minimize the total annual cost of polygeneration systems. Scenarios with and without electricity sale were considered. CO2 emissions were also calculated to estimate the environmental impact. Results show that RD 900/2015 discourages the investment in self-consumption systems whereas the RD 244/2019 encourages them, especially in renewable energy technologies. Moreover, in economic terms, it is more profitable to invest in collective self-consumption installations over individual installations. However, this does not necessarily represent a significant reduction of CO2 emissions with respect to individual installations since the natural gas consumption tends to increase as its unit price decreases because of the increase of its consumption level. Thus, more appropriate pricing of natural gas in residential sector, in which its cost would not be reduced when increasing its consumption, would be required to achieve significant CO2 emissions reduction. In all cases, the photovoltaic panels (PV) are competitive and profitable without subsidies in self-consumption schemes and the reversible heat pump (HP) played an important role for the CO2 emissions reduction. In a horizon to achieve zero CO2 emissions, the net metering scheme could be an interesting and profitable alternative to be considered.  相似文献   

12.
A novel solar based combined system is proposed to produce hydrogen and cooling. The presented cogeneration system is analyzed in detail from the viewpoints of exergy and exergoeconomic (exergy based economic analysis). The proposed system includes a concentrated PVT (CPVT), a single effect LiBr-H2O absorption chiller and proton exchange membrane electrolyzer (PEM). Produced electrical power is consumed in the PEM electrolyzer to split water into oxygen and pure hydrogen while heat removal from the CPVT is done by the absorption chiller to guarantee its better performance. Second law analysis showed that, among the three different parts of the system, the most part of exergy destruction refers to the CPVT followed by absorption chiller unit and PEM electrolyzer. Also, it is observed that, among the absorption units' components, the highest percent of exergy destruction belongs to the generator which absorbs the heat from the CPVT. Moreover, exergoeconomic analysis revealed that the most important unit from the viewpoint of economic is the CPVT with the capital investment cost of 0.08946 $/h and an exergoeconomic factor of 28.82%.  相似文献   

13.
In the present study, a new solar-based energy system for a self-sustained community is presented and analysed via the principles of thermodynamics. The presented system can meet the electricity demand, cooling load, and hydrogen (for the refueling of the vehicles) in a community by using a solar heliostat system (based on molten salt) in remote areas. Steam Rankine cycle is used to feed the electricity demand while some of the steam is bled out to operate the two-stage ammonia water-based absorption system for the cooling application. The result of the present study shows that with a heliostat area of 6000 m2, 372 kW of electricity, 610 kW of cooling capacity, and 7.2 kg/h of hydrogen is generated. Furthermore, exergy analysis results reveal that the maximum exergy destruction takes place in the central receiver (1170 kW) followed by heliostat (980 kW). The performance assessment of the overall presented system is made via exergy and energy efficiencies and estimated as 17.7%, and 38.9% respectively. Effects of some crucial parameters such as direct normal irradiance, evaporator temperature, the bleeding ratio, etc. have been studied on the overall system performance.  相似文献   

14.
In this study, a solar and wind energy-based system integrated with H2O2 combustor is developed to produce fresh water from sea-water desalination, electricity, cooling, hydrogen, and oxygen as well as to provide food drying and domestic water heating. The main components of the proposed system contains concentrated solar power (CSP), wind turbine, Rankine cycle, multi stage flash (MSF) desalination unit, water electrolyzer, a refrigeration unit, a food drying system, oxy-hydrogen combustor, domestic water heater, as well as hydrogen and oxygen storage units. Furthermore, for continuous operation of the system during night time and in cloudy weather conditions, a thermal energy storage (TES) unit and oxy-hydrogen combustion unit are integrated to the system. Based on energy and exergy balances, performance assessment of the proposed system is conducted. Moreover, effects of various parameters such as solar irradiation, wind speed and ambient temperature on some of the outputs of the system are investigated. The results illustrate that the proposed system fulfills most of the remote community requirements in an efficient, environmentally benign and uninterrupted way. The obtained results for the reference case show that with installation of parabolic trough concentrators (PTCs) on an area of 111,728 m2, the plant produces net electrical power of approximately 11.4 MW, approximately 828 m3/day of freshwater, about 36 kg/s of hot air for food drying, about 31 kg/s of heated domestic water, approximately 920 kg/day of H2 and about 2.26 MW of cooling. The overall energy efficiency of the system is found to be 50%, while the exergy efficiency of the system is 34%. In addition, the energy and exergy efficiencies of single generation in which there is only electrical power output are approximately 15% and 16%, respectively.  相似文献   

15.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

16.
Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.  相似文献   

17.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

18.
For the feasible and continuous utilization of intermittent wind and solar energy sources for electricity generation in district energy systems in hot-climates, where cooling loads are dominant, ice storage may be an option. In this study, the rationality of the ice storage system for wind energy was investigated using the Rational Exergy Management Model, REMM for two options and compared with a base scenario, which comprises a wind turbine system, grid connection, conventional chillers, and the district cooling system. The main objective is to minimize exergy destructions and thus to improve the exergy performance. The first ice storage option is composed of wind turbines, deep chillers for ice making, ice storage tanks, and the district cooling system. The second option is similar to the first option but it also includes a ground-source heat pump upstream the deep chiller. These options were also compared against a mini-hydrogen economy (District size) alternative, which encompasses a hydrogen-water cycle with excess renewable energy-powered PEM electrolysis unit, hydrogen tank, fuel cell, absorption chiller, gas compression chiller, and the district cooling system. These two options and the hydrogen-water cycle alternative were compared in terms of their REMM efficiency, First and Second-law efficiencies, and the primary energy ratio. A new Sustainability Performance Index, namely SPI was also defined. SPI is the product of the REMM efficiency, First-Law Efficiency, and the load coincidence factor, CF of wind energy. In order to establish a realistic application background for the comparisons, first a nearly-net-zero exergy farmland (nZEXF) utilizing biogas, cogeneration, solar photovoltaics, heat, absorption cycle, ground-source heat pump, Organic Rankine Cycle, and wind turbines was introduced as a model. The primary objective of this study is to determine the best option with the least avoidable CO2 emissions responsibility of the systems considered in terms of the REMM efficiency in thermal or hydrogen storage systems. Results have been compared in terms of SPI with the base scenario and it has been concluded that the second option (SPI = 0.88) is better than the first option (SPI = 0.38). However, hydrogen storage is an even better alternative with an SPI value of 1.06. These figures according to REMM with the coincidence factor being considered, mean that the avoidable CO2 emissions may be reduced by up to 54% compared to the base case. Hydrogen cycle option may also be used with the same effectiveness in district heating, while ice storage options are limited to district cooling only. This paper provides the relevant theory, shows the fundamental calculations about the option rankings based on a unit cooling load, makes recommendations for future district energy systems, and refers to a conceptual hydrogen economy driven city.  相似文献   

19.
We evaluate the extent to which a combination of wind power and concentrating solar power (CSP) may lead to stable and even baseload power by taking advantage of: 1) spatiotemporal balancing of solar and wind energy resources and 2) storage capabilities of CSP plants. A case study is conducted for the region of Andalusia in Spain. To this end, spatiotemporal variability of modeled CSP and wind capacity factors in a 3-km spatial resolution grid were analyzed based on principal component analysis (PCA) and canonical correlation analysis (CCA). Results reveal that renewable baseload power can be obtained in the study region by locating wind farms and CSP plants using balancing patterns derived from CCA and PCA. In addition, the power fluctuation reduction attained from these patterns was substantially higher than those obtained by interconnecting randomly-located wind farms and CSP plants across the study region. Results were particularly meaningful for the winter season. Upon considering storage capability of the CSP plants, results proved better. The main difference was a higher firm capacity value associated with spring and summer seasons. For the other seasons, the contribution of thermal storage capabilities of the CSP plants to stable power proved less relevant.  相似文献   

20.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号